ﻻ يوجد ملخص باللغة العربية
We present an experiment demonstrating entanglement-enhanced classical communication capacity of a quantum channel with correlated noise. The channel is modelled by a fiber optic link exhibiting random birefringence that fluctuates on a time scale much longer than the temporal separation between consecutive uses of the channel. In this setting, introducing entanglement between two photons travelling down the fiber allows one to encode reliably up to one bit of information into their joint polarization degree of freedom. When no quantum correlations between two separate uses of the channel are allowed, this capacity is reduced by a factor of more than three. We demonstrated this effect using a fiber-coupled source of entagled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement.
We present and experimentally demonstrate a communication protocol that employs shared entanglement to reduce errors when sending a bit over a particular noisy classical channel. Specifically, it is shown that, given a single use of this channel, one
We study the capacity of d-dimensional quantum channels with memory modeled by correlated noise. We show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher valu
The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the cloning
We develop a model for a noisy communication channel in which the noise affecting consecutive transmissions is correlated. This model is motivated by fluctuating birefringence of fiber optic links. We analyze the role of entanglement of the input sta
Shors powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shors algorithm in a photonic system