ﻻ يوجد ملخص باللغة العربية
In the design of quantum computer architectures that take advantage of the long coherence times of dopant nuclear and electron spins in the solid-state, single-spin detection for readout remains a crucial unsolved problem. Schemes based on adiabatically induced spin-dependent electron tunnelling between individual donor atoms, detected using a single electron transistor (SET) as an ultra-sensitive electrometer, are thought to be problematic because of the low ionisaton energy of the final D- state. In this paper we analyse the adiabatic scheme in detail. We find that despite significant stabilization due to the presence of the D+, the field strengths required for the transition lead to a shortened dwell-time placing severe constraints on the SET measurement time. We therefore investigate a new method based on resonant electron transfer, which operates with much reduced field strengths. Various issues in the implementation of this method are also discussed.
Determination of qubit initialisation and measurement fidelity is important for the overall performance of a quantum computer. However, the method by which it is calculated in semiconductor qubits varies between experiments. In this paper we present
Future universal quantum computers solving problems of practical relevance are expected to require at least $10^6$ qubits, which is a massive scale-up from the present numbers of less than 50 qubits operated together. Out of the different types of qu
We propose a scheme to read out the spin of a single electron quantum bit in a surface Paul trap using oscillating magnetic field gradients. The readout sequence is composed of cooling, driving, amplification and detection of the electrons motion. We
The computer simulations of the process of single pulse readout from the flux-biased phase qubit is performed in the frame of one-dimensional Schroedinger equation. It has been demonstrated that the readout error can be minimized by choosing the opti
We demonstrate dispersive readout of the spin of an ensemble of Nitrogen-Vacancy centers in a high-quality dielectric microwave resonator at room temperature. The spin state is inferred from the reflection phase of a microwave signal probing the reso