ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-spin readout for buried dopant semiconductor qubits

103   0   0.0 ( 0 )
 نشر من قبل Lloyd Hollenberg
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the design of quantum computer architectures that take advantage of the long coherence times of dopant nuclear and electron spins in the solid-state, single-spin detection for readout remains a crucial unsolved problem. Schemes based on adiabatically induced spin-dependent electron tunnelling between individual donor atoms, detected using a single electron transistor (SET) as an ultra-sensitive electrometer, are thought to be problematic because of the low ionisaton energy of the final D- state. In this paper we analyse the adiabatic scheme in detail. We find that despite significant stabilization due to the presence of the D+, the field strengths required for the transition lead to a shortened dwell-time placing severe constraints on the SET measurement time. We therefore investigate a new method based on resonant electron transfer, which operates with much reduced field strengths. Various issues in the implementation of this method are also discussed.



قيم البحث

اقرأ أيضاً

Determination of qubit initialisation and measurement fidelity is important for the overall performance of a quantum computer. However, the method by which it is calculated in semiconductor qubits varies between experiments. In this paper we present a full theoretical analysis of electronic single-shot readout and describe critical parameters to achieve high fidelity readout. In particular, we derive a model for energy selective state readout based on a charge detector response and examine how to optimise the fidelity by choosing correct experimental parameters. Although we focus on single electron spin readout, the theory presented can be applied to other electronic readout techniques in semiconductors that use a reservoir.
Future universal quantum computers solving problems of practical relevance are expected to require at least $10^6$ qubits, which is a massive scale-up from the present numbers of less than 50 qubits operated together. Out of the different types of qu bits, solid state qubits are considered to be viable candidates for this scale-up, but interfacing to and controlling such a large number of qubits is a complex challenge that has not been solved yet. One possibility to address this challenge is to use qubit control circuits located close to the qubits at cryogenic temperatures. In this work we evaluate the feasibility of this idea, taking as a reference the physical requirements of a two-electron spin qubit and the specifications of a standard 65 nm complementary metal-oxide-semiconductor (CMOS) process. Using principles and flows from electrical systems engineering we provide realistic estimates of the footprint and of the power consumption of a complete control-circuit architecture. Our results show that with further research it is possible to provide scalable electrical control in the vicinity of the qubit, with our concept.
We propose a scheme to read out the spin of a single electron quantum bit in a surface Paul trap using oscillating magnetic field gradients. The readout sequence is composed of cooling, driving, amplification and detection of the electrons motion. We study the scheme in the presence of noise and trap anharmonicities at liquid helium temperatures. An analysis of the the four procedures shows short measurement times ($25~mu$s) and high fidelities ($99.7%$) are achievable with realistic experimental parameters. Our scheme performs the function of fluorescence detection in ion trapping schemes, highlighting the potential to built all-electric quantum computers based on trapped electron spin qubits.
The computer simulations of the process of single pulse readout from the flux-biased phase qubit is performed in the frame of one-dimensional Schroedinger equation. It has been demonstrated that the readout error can be minimized by choosing the opti mal pulse duration and the depth of a potential well, leading to the fidelity of 0.94 for 2ns and 0.965 for 12ns sinusoidal pulses.
104 - J. Ebel , T. Joas , M. Schalk 2020
We demonstrate dispersive readout of the spin of an ensemble of Nitrogen-Vacancy centers in a high-quality dielectric microwave resonator at room temperature. The spin state is inferred from the reflection phase of a microwave signal probing the reso nator. Time-dependent tracking of the spin state is demonstrated, and is employed to measure the T1 relaxation time of the spin ensemble. Dispersive readout provides a microwave interface to solid state spins, translating a spin signal into a microwave phase shift. We estimate that its sensitivity can outperform optical readout schemes, owing to the high accuracy achievable in a measurement of phase. The scheme is moreover applicable to optically inactive spin defects and it is non-destructive, which renders it insensitive to several systematic errors of optical readout and enables the use of quantum feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا