ﻻ يوجد ملخص باللغة العربية
We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, coupled by tunneling, with one excess electron. It is shown how to create maximally entangled states with this kind of qubits using an adiabatically increasing Coulomb repulsion between different pairs. This entangled states are exploited to perform teleportation again using an adiabatic coupling between them and the incoming unknown state. Finally, a sudden separation of Bobs qubit enables a time evolution of Alices state providing a modified version of standard Bell measurement. Substituting the four quantum dots entangled state with a chain of coupled DQDs, a quantum channel with high fidelity arises from this scheme allowing the transmission over long distances.
We introduce a model of quantum teleportation on a channel built on a quantum dot chain. Quantum dots are coupled through hopping and each dot can accept zero, one or two electrons. Vacuum and double occupation states have the same potential energy,
Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementatio
We present measurements of the capacitive coupling energy and the inter-dot capacitances in a linear quadruple quantum dot array in undoped Si/SiGe. With the device tuned to a regime of strong ($>$1 GHz) intra-double dot tunnel coupling, as is typica
Recently, de Visser and Blaauboer [Phys. Rev. Lett. {bf 96}, 246801 (2006)] proposed the most efficient deterministic teleportation protocol $cal T$ for electron spins in a semiconductor nanostructure consisting of a single and a double quantum dot.
The no-masking theorem says that masking quantum information is impossible in a bipartite scenario. However, there exist schemes to mask quantum states in multipartite systems. In this work, we show that, the joint measurement in the teleportation is