ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-photon, multi-mode polarization entanglement in parametric down-conversion

110   0   0.0 ( 0 )
 نشر من قبل Alessandra Gatti
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantum properties of the polarization of the light produced in type II spontaneous parametric down-conversion in the framework of a multi-mode model valid in any gain regime. We show that the the microscopic polarization entanglement of photon pairs survives in the high gain regime (multi-photon regime), in the form of nonclassical correlation of all the Stokes operators describing polarization degrees of freedom.



قيم البحث

اقرأ أيضاً

We propose a novel scheme to generate polarization entanglement from spatially-correlated photon pairs. We experimentally realized a scheme by means of a spatial correlation effect in a spontaneous parametric down-conversion and a modified Michelson interferometer. The scheme we propose in this paper can be interpreted as a conversion process from spatial correlation to polarization entanglement.
In spontaneous parametric down conversion (SPDC) based quantum information processing (QIP) experiments, there is a tradeoff between the coincide count rates (i.e. the pumping power of the SPDC), which limits the rate of the protocol, and the visibil ity of the quantum interference, which limits the quality of the protocol. This tradeoff is mainly caused by the multi-photon pair emissions from the SPDCs. In theory, the problem is how to model the experiments without truncating these multi-photon emissions while including practical imperfections. In this paper, we establish a method to theoretically simulate SPDC based QIPs which fully incorporates the effect of multi-photon emissions and various practical imperfections. The key ingredient in our method is the application of the characteristic function formalism which has been used in continuous variable QIPs. We apply our method to three examples, the Hong-Ou-Mandel interference and the Einstein-Podolsky-Rosen interference experiments, and the concatenated entanglement swapping protocol. For the first two examples, we show that our theoretical results quantitatively agree with the recent experimental results. Also we provide the closed expressions for these the interference visibilities with the full multi-photon components and various imperfections. For the last example, we provide the general theoretical form of the concatenated entanglement swapping protocol in our method and show the numerical results up to 5 concatenations. Our method requires only a small computation resource (few minutes by a commercially available computer) which was not possible by the previous theoretical approach. Our method will have applications in a wide range of SPDC based QIP protocols with high accuracy and a reasonable computation resource.
273 - D. Daems , F. Bernard , N. J. Cerf 2010
Most investigations of multipartite entanglement have been concerned with temporal modes of the electromagnetic field, and have neglected its spatial structure. We present a simple model which allows to generate tripartite entanglement between spatia l modes by parametric down-conversion with two symmetrically-tilted plane waves serving as a pump. The characteristics of this entanglement are investigated. We also discuss the generalization of our scheme to 2N+1-partite entanglement using 2N symmetrically-tilted plane pump waves. Another interesting feature is the possibility of entanglement localization in just two spatial modes.
In this paper we describe theoretically quantum control of temporal correlations of entangled photons produced by collinear type II spontaneous parametric down-conversion. We examine the effect of spectral phase modulation of the signal or idler phot ons arriving at a 50/50 beam splitter on the temporal shape of the entangled-photon wave packet . The coincidence count rate is calculated analytically for photon pairs in terms of the modulation depth applied to either the signal or idler beam with a spectral phase filter. It is found that the two-photon coincidence rate can be controlled by varying the modulation depth of the spectral filter.
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i nto two other photons of lower energies. One would think that this article is about particle physics and yet it is not, as this process can occur fairly easily on a day to day basis in an optics laboratory. Nowadays, SPDC is at the heart of many quantum optics experiments for applications in quantum cryptography, quantum simulation, quantum metrology but also for testing fundamentals laws of physics in quantum mechanics. In this article, we will focus on the physics of this process and highlight few important properties of SPDC. There will be two parts: a first theoretical one showing the particular quantum nature of SPDC and the second part, more experimental and in particular focusing on applications of parametric down-conversion. This is clearly a non-exhaustive article about parametric down-conversion as there is a tremendous literature on the subject, but it gives the necessary first elements needed for a novice student or researcher to work on SPDC sources of light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا