ﻻ يوجد ملخص باللغة العربية
In this article initial steps in an analysis of cyclic networks of quantum logic gates is given. Cyclic networks are those in which the qubit lines are loops. Here we have studied one and two qubit systems plus two qubit cyclic systems connected to another qubit on an acyclic line. The analysis includes the group classification of networks and studies of the dynamics of the qubits in the cyclic network and of the perturbation effects of an acyclic qubit acting on a cyclic network. This is followed by a discussion of quantum algorithms and quantum information processing with cyclic networks of quantum gates, and a novel implementation of a cyclic network quantum memory. Quantum sensors via cyclic networks are also discussed.
We extend the circuit model of quantum comuptation so that the wiring between gates is soft-coded within registers inside the gates. The addresses in these registers can be manipulated and put into superpositions. This aims at capturing indefinite ca
High quality, fully-programmable quantum processors are available with small numbers (<1000) of qubits, and the scientific potential of these near term machines is not well understood. If the small number of physical qubits precludes practical quantu
The presence of decoherence in quantum computers necessitates the suppression of noise. Dynamically corrected gates via specially designed control pulses offer a path forward, but hardware-specific experimental constraints can cause complications. He
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standa
Causal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing qu