ﻻ يوجد ملخص باللغة العربية
We discuss the effects of imperfect photon detectors suffering from loss and noise on the reliability of linear optical quantum computers. We show that for a given detector efficiency, there is a maximum achievable success probability, and that increasing the number of ancillary photons and detectors used for one controlled sign flip gate beyond a critical point will decrease the probability that the computer will function correctly. We have also performed simulations of some small logic gates and estimate the efficiency and noise levels required for the linear optical quantum computer to function properly.
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this pap
We use the numerical optimization techniques of Uskov et al. [PRA 81, 012303 (2010)] to investigate the behavior of the success rates for KLM style [Nature 409, 46 (2001)] two- and three-qubit entangling gates. The methods are first demonstrated at p
Weak value amplification (WVA) is a metrological protocol that amplifies ultra-small physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall meas
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from e
This article introduces quantum computation by analogy with probabilistic computation. A basic description of the quantum search algorithm is given by representing the algorithm as a C program in a novel way.