ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity optimization in quantum parameter estimation

69   0   0.0 ( 0 )
 نشر من قبل Andrew C. Doherty
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general framework for sensitivity optimization in quantum parameter estimation schemes based on continuous (indirect) observation of a dynamical system. As an illustrative example, we analyze the canonical scenario of monitoring the position of a free mass or harmonic oscillator to detect weak classical forces. We show that our framework allows the consideration of sensitivity scheduling as well as estimation strategies for non-stationary signals, leading us to propose corresponding generalizations of the Standard Quantum Limit for force detection.



قيم البحث

اقرأ أيضاً

In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incom patibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
We investigate cryptographic quantum parameter estimation with a high-dimensional system that allows only Bob (Receiver) to access the result and achieve optimal parameter precision from Alice (Sender). Eavesdropper (Eve) only can disturb the paramet er estimation of Bob, but she can not obtain the information of parameter. We analyze the security and show that the high-dimensional system can help to utilize the resource to obtain better precision than the two-dimensional system. Finally, we generalize it to the case of multi-parameter.
When collective measurements on an infinite number of copies of identical quantum states can be performed, the precision limit of multi-parameter quantum estimation is quantified by the Holevo bound. In practice, however, the collective measurements are always restricted to a finite number of quantum states, under which the precision limit is still poorly understood. Here we provide an approach to study the multi-parameter quantum estimation with general $p$-local measurement where the collective measurements are restricted to at most $p$ copies of quantum states. We demonstrate the power of the approach by providing a hierarchy of nontrivial tradeoff relations for multi-parameter quantum estimation which quantify the incompatibilities of general $p$-local measurement. These tradeoff relations also provide a necessary condition for the saturation of the quantum Cramer-Rao bound under $p$-local measurement, which is shown reducing to the weak commutative condition when $prightarrow infty$. To further demonstrate the versatility of the approach, we also derive another set of tradeoff relations in terms of the right logarithmic operators(RLD).
148 - Bradley A. Chase 2009
This dissertation explores the topics of parameter estimation and model reduction in the context of quantum filtering. Chapters 2 and 3 provide a review of classical and quantum probability theory, stochastic calculus and filtering. Chapter 4 studies the problem of quantum parameter estimation and introduces the quantum particle filter as a practical computational method for parameter estimation via continuous measurement. Chapter 5 applies these techniques in magnetometry and studies the estimators uncertainty scalings in a double-pass atomic magnetometer. Chapter 6 presents an efficient feedback controller for continuous-time quantum error correction. Chapter 7 presents an exact model of symmetric processes of collective qubit systems.
We provide a general framework for handling the effects of a unitary disturbance on the estimation of the amplitude $lambda$ associated to a unitary dynamics. By computing an analytical and general expression for the quantum Fisher information, we pr ove that the optimal estimation precision for $lambda$ cannot be outperformed through the addition of such a unitary disturbance. However, if the dynamics of the system is already affected by an external field, increasing its strength does not necessary imply a loss in the optimal estimation precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا