ترغب بنشر مسار تعليمي؟ اضغط هنا

Separability and entanglement in 2x2xN composite quantum systems

89   0   0.0 ( 0 )
 نشر من قبل Sinisa Karnas
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

93 - Bang-Hai Wang 2020
Quantum states are the key mathematical objects in quantum mechanics, and entanglement lies at the heart of the nascent fields of quantum information processing and computation. What determines whether an arbitrary quantum state is entangled or separ able is therefore very important for investigating both fundamental physics and practical applications. Here we show that an arbitrary bipartite state can be divided into a unique purely entangled structure and a unique purely separable structure. We show that whether a quantum state is entangled or not is determined by the ratio of its weight of the purely entangled structure and its weight of the purely separable structure. We provide a general algorithm for the purely entangled structure and the purely separable structure, and a general algorithm for the best separable approximation (BSA) decomposition, that has been a long-standing open problem. Our result implies that quantum states exist as families in theory, and that the entanglement (separability) of family members can be determined by referring to a crucial member of the family.
We investigate the separability of arbitrary dimensional tripartite sys- tems. By introducing a new operator related to transformations on the subsystems a necessary condition for the separability of tripartite systems is presented.
We study the geometric Uhlmann phase of entangled mixed states in a composite system made of two coupled spin-$frac 1 2$ particles with a magnetic field acting on one of them. Within a depolarizing channel setup, an exact analytical expression for su ch a phase in each subsystem is derived. We find an explicit connection to the concurrence of the depolarizing channel density matrix, which allows to characterize the features of the Uhlmann phase in terms of the degree of entanglement in the system. In the space of field direction and coupling parameter, it exhibits a phase singularity revealing a topological transition between orders with different winding numbers. The transition occurs for fields lying in the equator of the sphere of directions and at critical values of the coupling which can be controlled by tuning the depolarization strength. Notably, under these conditions the concurrence of the composite system is bounded to the range $[0,1/2]$. We also compare the calculated Uhlmann phase to an interferometric phase, which has been formulated as an alternative for density matrices. The latter does not present a phase vortex, although they coincide in the weak entanglement regime, for vanishing depolarization (pure states). Otherwise they behave clearly different in the strong entanglement regime.
We investigate the separability of quantum states based on covariance matrices. Separability criteria are presented for multipartite states. The lower bound of concurrence proposed in Phys. Rev. A. 75, 052320 (2007) is improved by optimizing the local orthonormal observables.
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e ntanglement measures. We also provide a classification of entangled states with respect to their usefulness in quantum dense coding, and present some aspects of multipartite entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا