Synchronization is known to play a vital role within many highly connected neural systems such as the olfactory systems of fish and insects. In this paper we show how one can robustly and effectively perform practical computations using small perturbations to a very simple globally coupled network of coupled oscillators. Computations are performed by exploiting the spatio-temporal dynamics of a robust attracting heteroclinic network (also referred to as `winnerless competition dynamics). We use different cluster synchronization states to encode memory states and use this to design a simple multi-base counter. The simulations indicate that this gives a robust computational system exploiting the natural dynamics of the system.