ﻻ يوجد ملخص باللغة العربية
We consider extinction times for a class of birth-death processes commonly found in applications, where there is a control parameter which determines whether the population quickly becomes extinct, or rather persists for a long time. We give an exact expression for the discrete case and its asymptotic expansion for large values of the population. We have results below the threshold, at the threshold, and above the threshold (where there is a quasi-stationary state and the extinction time is very long.) We show that the Fokker-Planck approximation is valid only quite near the threshold. We compare our analytical results to numerical simulations for the SIS epidemic model, which is in the class that we treat. This is an interesting example of the delicate relationship between discrete and continuum treatments of the same problem.
The dynamics of populations is frequently subject to intrinsic noise. At the same time unknown interaction networks or rate constants can present quenched uncertainty. Existing approaches often involve repeated sampling of the quenched disorder and t
The question of whether a population will persist or go extinct is of key interest throughout ecology and biology. Various mathematical techniques allow us to generate knowledge regarding individual behaviour, which can be analysed to obtain predicti
Power-law-distributed species counts or clone counts arise in many biological settings such as multispecies cell populations, population genetics, and ecology. This empirical observation that the number of species $c_{k}$ represented by $k$ individua
We investigate in detail the model of a trophic web proposed by Amaral and Meyer [Phys. Rev. Lett. 82, 652 (1999)]. We focused on small-size systems that are relevant for real biological food webs and for which the fluctuations are playing an importa
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi