ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic dynamics of cold atoms in far-off-resonant donut beam

175   0   0.0 ( 0 )
 نشر من قبل Liu
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the classical two dimensinal nonlinear dynamics of cold atoms in far-off-resonant donut beams. We show that there chaotic dynamics exists for charge greater than unity, when the intensity of the beam is periodically modulated. The two dimensional distributions of atoms in $(x,y)$ plane for charge two are simulated. We show that the atoms will acumulate on several ring regions when the system enters to regime of global chaos.



قيم البحث

اقرأ أيضاً

In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.
We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling proces s this setting works as a one-way device or atom diode.
Resonant electric dipole-dipole interactions between cold Rydberg atoms were observed using microwave spectroscopy. Laser-cooled Rb atoms in a magneto-optical trap were optically excited to 45d Rydberg states using a pulsed laser. A microwave pulse t ransferred a fraction of these Rydberg atoms to the 46p state. A second microwave pulse then drove atoms in the 45d state to the 46d state, and was used as a probe of interatomic interactions. The spectral width of this two-photon probe transition was found to depend on the presence of the 46p atoms, and is due to the resonant electric dipole-dipole interaction between 45d and 46p Rydberg atoms.
Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take.
We study resonant energy transfer in a one-dimensional chain of two to five atoms by analyzing time-dependent probabilities as function of their interatomic distances. The dynamics of the system are first investigated by including the nearest-neighbo ur interactions and then accounting for all next-neighbour interactions. We find that inclusion of nearest-neighbour interactions in the Hamiltonian for three atoms chain exhibits perdiocity during the energy transfer dynamics, however this behavior displays aperiodicity with the all-neighbour interactions. It shows for the equidistant chains of four and five atoms the peaks are always irregular but regular peaks are retrieved when the inner atoms are placed closer than the atoms at both the ends. In this arrangement, the energy transfer swings between the atoms at both ends with very low probability of finding an atom at the center. This phenomenon resembles with quantum notion of Newtons cradle. We also find out the maximum distance up to which energy could be transferred within the typical lifetimes of the Rydberg states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا