ﻻ يوجد ملخص باللغة العربية
We describe the classical two dimensinal nonlinear dynamics of cold atoms in far-off-resonant donut beams. We show that there chaotic dynamics exists for charge greater than unity, when the intensity of the beam is periodically modulated. The two dimensional distributions of atoms in $(x,y)$ plane for charge two are simulated. We show that the atoms will acumulate on several ring regions when the system enters to regime of global chaos.
In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a
We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling proces
Resonant electric dipole-dipole interactions between cold Rydberg atoms were observed using microwave spectroscopy. Laser-cooled Rb atoms in a magneto-optical trap were optically excited to 45d Rydberg states using a pulsed laser. A microwave pulse t
Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at
We study resonant energy transfer in a one-dimensional chain of two to five atoms by analyzing time-dependent probabilities as function of their interatomic distances. The dynamics of the system are first investigated by including the nearest-neighbo