ﻻ يوجد ملخص باللغة العربية
The normalized radial basis function neural network emerges in the statistical modeling of natural laws that relate components of multivariate data. The modeling is based on the kernel estimator of the joint probability density function pertaining to given data. From this function a governing law is extracted by the conditional average estimator. The corresponding nonparametric regression represents a normalized radial basis function neural network and can be related with the multi-layer perceptron equation. In this article an exact equivalence of both paradigms is demonstrated for a one-dimensional case with symmetric triangular basis functions. The transformation provides for a simple interpretation of perceptron parameters in terms of statistical samples of multivariate data.
Selection of the correct convergence angle is essential for achieving the highest resolution imaging in scanning transmission electron microscopy (STEM). Use of poor heuristics, such as Rayleighs quarter-phase rule, to assess probe quality and uncert
In this paper we recreate, and improve, the binary classification method for particles proposed in Roe et al. (2005) paper Boosted decision trees as an alternative to artificial neural networks for particle identification. Such particles are tau neut
In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Compa
Despite of their success, the results of first-principles quantum mechanical calculations contain inherent numerical errors caused by various approximations. We propose here a neural-network algorithm to greatly reduce these inherent errors. As a dem
We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the nee