ﻻ يوجد ملخص باللغة العربية
The quasistatic limit of the velocity-gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linear polarized laser fields is derived. It is shown that in the low-frequency limit the ionization rate is proportional to the laser frequency, if a Coulombic long-range interaction is present. An expression for the corresponding proportionality coefficient is given. Since neither the saddle-point approximation nor the one of a small kinetic momentum is used in the derivation, the obtained expression represents the exact asymptotic limit. This result is used to propose a Coulomb correction factor. Finally, the applicability of the found asymptotic expression for non-vanishing laser frequencies is investigated.
We present a simple quantum mechanical model to describe Coulomb explosion of H$_2^+$ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter
Diatomic molecules (e.g., O$_2$) in intense laser field exhibit a peculiar suppressed ionization behavior compared to their companion atoms. Several physical models have been proposed to account for this suppression while no consensus has been achiev
Gauge invariance was discovered in the development of classical electromagnetism and was required when the latter was formulated in terms of the scalar and vector potentials. It is now considered to be a fundamental principle of nature, stating that
The strong-field approximation can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qu
Rapid-advancing intense laser technologies enable the possibility of a direct laser-nucleus coupling. In this paper the effect of intense laser fields on a series of nuclear fission processes, including proton decay, alpha decay, and cluster decay, i