ﻻ يوجد ملخص باللغة العربية
To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochemical reactions, where the total number of molecules is not significantly larger than the number of chemical species. To elucidate the effects of such discreteness, we study autocatalytic reaction systems comprising several chemical species through stochastic particle simulations. The generation of novel states is observed; it is caused by the extinction of some molecular species due to the discreteness in their number. We demonstrate that the reaction dynamics are switched by a single molecule, which leads to the reconstruction of the acting network structure. We also show the strong dependence of the chemical concentrations on the system size, which is caused by transitions to discreteness-induced novel states.
To study the dynamics of chemical processes, we often adopt rate equations to observe the change in chemical concentrations. However, when the number of the molecules is small, the fluctuations cannot be neglected. We often study the effects of fluct
Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can
A self-consistent equation to derive a discreteness-induced stochastic steady state is presented for reaction-diffusion systems. For this formalism, we use the so-called Kuramoto length, a typical distance over which a molecule diffuses in its lifeti
We report a study of a system which involves an enzymatic cascade realizing an AND logic gate, with an added photochemical processing of the output allowing to make the gates response sigmoid in both inputs. New functional forms are developed for qua
Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at atomic resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consi