ﻻ يوجد ملخص باللغة العربية
Neutrino beams at from high-energy proton accelerators have been instrumental discovery tools in particle physics. Neutrino beams are derived from the decays of charged pi and K mesons, which in turn are created from proton beams striking thick nuclear targets. The precise selection and manipulation of the pi/K beam control the energy spectrum and type of neutrino beam. This article describes the physics of particle production in a target and manipulation of the particles to derive a neutrino beam, as well as numerous innovations achieved at past experimental facilities.
Neutrino beams obtained from proton accelerators were first operated in 1962. Since then, neutrino beams have been intensively used in particle physics and evolved in many different ways. We describe the characteristics of various neutrino beams, rel
Fermilab has had a very active long baseline neutrino program since initiation of the NuMI project in 1998. Commissioned in 2005, the NuMI beam with 400 kW design power has been in operation for the MINOS neutrino oscillation program since that time.
The three-flavor neutrino oscillation paradigm is well established in particle physics thanks to the crucial contribution of accelerator neutrino beam experiments. In this paper we review the most important contributions of these experiments to the p
Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After accelera
Neutrino oscillation physics has entered a new precision era, which poses major challenges to the level of control and diagnostics of the neutrino beams. In this paper, we review the design of high-precision beams, their current limitations, and the