ﻻ يوجد ملخص باللغة العربية
TeV center of mass energy lepton-hadron collider is necessary both to clarify fundamental aspects of strong interactions and for adequate interpretation of the LHC data. Recently proposed QCD Explorer utilizes the energy advantage of the LHC proton and ion beams, which allows the usage of relatively low energy electron beam. Two options for the LHC based ep collider are posibble: construction of a new electron ring in the LHC tunnel or construction of an e-linac tangentially to the LHC. In the latter case, which seems more acceptable for a number of reasons, two options are under consideration for electron linac: the CLIC technology allows shorter linac length, whereas TESLA technology gives higher luminosity.
The relative center-of-mass energy spread at $e^+e^-$ colliders is about $10^{-3}$, which is much larger than the widths of narrow resonances produced in the s-channel in $e^+e^-$ collisions. This circumstance greatly lowers the resonance production
Superconducting niobium cavity technology (used for ILC) makes it possible to build a linear collider with energy recovery (ERLC). To avoid parasitic collisions inside the linacs a twin LC is proposed. In this article, we consider the principle schem
The international Future Circular Collider (FCC) study aims at a design of $pp$, $e^+e^-$, $ep$ colliders to be built in a new 100 km tunnel in the Geneva region. The $e^+e^-$ collider (FCC-ee) has a centre of mass energy range between 90 (Z-pole) an
A strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closur
Particle loss due to the emission of single energetic beamstrahlung photons in beam collisions is shown to impose a fundamental limit on storage-ring luminosities at energies greater than 2E~140 GeV for head-on collisions and 2E~40 GeV for crab-waist