ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic $^{87}$Sr isotope

116   0   0.0 ( 0 )
 نشر من قبل Hidetoshi Katori
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a one-dimensional optical lattice clock with a spin-polarized fermionic isotope designed to realize a collision-shift-free atomic clock with neutral atom ensembles. To reduce systematic uncertainties, we developed both Zeeman shift and vector light-shift cancellation techniques. By introducing both an H-maser and a Global Positioning System (GPS) carrier phase link, the absolute frequency of the $^1S_0(F=9/2) - {}^3P_0(F=9/2)$ clock transition of the $^{87}$Sr optical lattice clock is determined as 429,228,004,229,875(4) Hz, where the uncertainty is mainly limited by that of the frequency link. The result indicates that the Sr lattice clock will play an important role in the scope of the redefinition of the ``second by optical frequency standards.



قيم البحث

اقرأ أيضاً

We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the st abilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of $2times10^{-17}$ was reached after $10^5$ s of averaging in an interleaved self-comparison of the clock.
214 - Xavier Baillard 2007
We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S0-3P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional accuracy of 2.6 10^{-15}, a value that is comparable to t he frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy.
We demonstrate a precision frequency measurement using a phase-stabilized 120-km optical fiber link over a physical distance of 50 km. The transition frequency of the 87Sr optical lattice clock at the University of Tokyo is measured to be 42922800422 9874.1(2.4) Hz referenced to international atomic time (TAI). The measured frequency agrees with results obtained in Boulder and Paris at a 6*10^-16 fractional level, which matches the current best evaluations of Cs primary frequency standards. The results demonstrate the excellent functions of the intercity optical fibre link, and the great potential of optical lattice clocks for use in the redefinition of the second.
93 - Anders Brusch 2005
We report the observation of the higher order frequency shift due to the trapping field in a $^{87}$Sr optical lattice clock. We show that at the magic wavelength of the lattice, where the first order term cancels, the higher order shift will not con stitute a limitation to the fractional accuracy of the clock at a level of $10^{-18}$. This result is achieved by operating the clock at very high trapping intensity up to $400 $kW/cm$^2$ and by a specific study of the effect of the two two-photon transitions near the magic wavelength.
We report on a series of 42 measurements of the transition frequency of the 429~THz (5s$^2$)~$^1$S$_0$--(5s5p)~$^3$P$_0$ line in $^{87}$Sr taken over three years from 2017 to 2019. They have been performed at the Physikalisch-Technische Bundesanstalt (PTB) between the laboratory strontium lattice clock and the primary caesium fountain clocks CSF1 and CSF2. The length of each individual measurement run has been extended by use of a hydrogen maser as flywheel to improve the statistical uncertainty given by the Cs clocks. We determine an averaged transition frequency of $429:228:004:229:873.00(0.07)$~Hz with $1.5times10^{-16}$ fractional uncertainty, at the limit of the current realization of the unit hertz. Analysis of the data provides an improved limit on the coupling of the gravitational potential of the Sun to the proton--electron mass ratio $mu$, and confirms the limits on its temporal drift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا