ﻻ يوجد ملخص باللغة العربية
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows predicts the observed self-organized criticality as intrinsic to quantumlike mechanics governing flow dynamics. Further, the fractal space-time structure to the stringlike atmospheric flow trajectory is resolved into a continuum of eddies. The eddy circulations obey Kepler third law of planetary motion and therefore eddy inertial masses obey Newton inverse square law of gravitation on all scales from microscopic to macroscale.
Parameter extension simulation (PES) as a mathematical method for simulating turbulent flows has been proposed in the study. It is defined as a calculation of the turbulent flow for the desired parameter values with the help of a reference solution.
We develop a stochastic model for the velocity gradients dynamics along a Lagrangian trajectory. Comparing with different attempts proposed in the literature, the present model, at the cost of introducing a free parameter known in turbulence phenomen
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in
A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddy-viscosity is modified subtracting the magnitude of the mean shear from the magn
A computational fluid dynamics (CFD) simulation framework for predicting complex flows is developed on the Tensor Processing Unit (TPU) platform. The TPU architecture is featured with accelerated performance of dense matrix multiplication, large high