ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Possibility of the Strong Field QED Investigation at LHC

89   0   0.0 ( 0 )
 نشر من قبل Victor Tikhomirov
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction of high energy particles with atomic axes and planes allows to observe in crystal various effects predicted by the quantum electrodynamics of phenomena in strong electromagnetic field. In particular, the effect of electron-positron pair production by gamma-quanta in a semi-uniform field was observed for the first time in eightieth in CERN in the field of germanium crystal axes. The high energy of LHC drastically widens the possibilities of strong field QCD effect investigation in crystals allowing to observe vacuum dichroism and birefringence, electron radiative self-polarization and polarized electron-positron pair production by gamma-quanta, positron (electron) anomalous magnetic moment modification and electron spin rotation in crystal field harmonics. The effect of vacuum birefringence induced by strong electric field is considered in detail.



قيم البحث

اقرأ أيضاً

The feasibility studies of the measurement of the central exclusive jet production at the LHC using the proton tagging technique are presented. In order to reach the low jet-mass region, single tagged events were considered. The studies were performe d at the c.m. energy of 14 TeV and the ATLAS detector, but are also applicable for the CMS-TOTEM experiments. Four data-taking scenarios were considered: AFP and ALFA detectors as forward proton taggers and $beta^*$ = 0.55 m and $beta^*$ = 90 m optics. After the event selection, the signal-to-background ratio ranges between 5 and $10^4$. Finally, the expected precision of the central exclusive dijet cross-section measurement for data collection period of 100 h is estimated.
73 - Tobias N. Wistisen 2019
We investigate the 2nd order process of two photons being emitted by a high-energy electron dressed in the strong background electric field found between the planes in a crystal. The strong crystalline field combined with ultra relativistic electrons is one of very few cases where the Schwinger field can be experimentally achieved in the electrons rest frame. The radiation being emitted, the so-called channeling radiation, is a well studied phenomenon. However only the first order diagram corresponding to emission of a single photon has been studied so far. We elaborate on how the 2 photon emission process should be understood in terms of a two-step versus a one-step process, i.e., if one can consider one photon being emitted after the other, or if there is also a contribution where the two photons are emitted simultaneously. From the calculated full probability we see that the two-step contribution is simply the product of probabilities for single photon emission while the additional one-step terms are, mainly, interferences due to several possible intermediate virtual states. These terms can contribute significantly when the crystal is thin. Therefore, in addition, we see how one can, for a thick crystal, calculate multiple photon emissions quickly by neglecting the one-step terms, which represents a solution of the problem of quantum radiation reaction in a crystal beyond the usually applied constant field approximation. We explicitly calculate an example of 180 GeV electrons in a thin Silicon crystal and argue why it is, for experimental reasons, more feasible to see the one-step contribution in a crystal experiment than in a laser experiment.
We analyze the phenomenology of the top-pion and top-Higgs states in models with strong top dynamics, and translate the present LHC searches for the Standard Model Higgs into bounds on these scalar states. We explore the possibility that the new stat e at a mass of approximately 125 GeV observed at the LHC is consistent with a neutral pseudoscalar top-pion state. We demonstrate that a neutral pseudoscalar top-pion can generate the diphoton signal at the observed rate. However, the region of model parameter space where this is the case does not correspond to classic topcolor-assisted technicolor scenarios with degenerate charged and neutral top-pions and a top-Higgs mass of order twice the top mass; rather, additional isospin violation would need to be present and the top dynamics would be more akin to that in top seesaw models. Moreover, the interpretation of the new state as a top-pion can be sustained only if the ZZ (four-lepton) and WW (two-lepton plus missing energy) signatures initially observed at the 3? level decline in significance as additional data is accrued.
64 - T. Heinzl , A. Ilderton , B. King 2021
QED perturbation theory has been conjectured to break down in sufficiently strong backgrounds, obstructing the analysis of strong-field physics. We show that the breakdown occurs even in classical electrodynamics, at lower field strengths than previo usly considered, and that it may be cured by resummation. As a consequence, an analogous resummation is required in QED. A detailed investigation shows, for a range of observables, that unitarity removes diagrams previously believed to be responsible for the breakdown of QED perturbation theory.
The problem of X-ray Free-Electron Laser operating on self-amplified spontaneous emission in irregular microundulator is considered. The case when the spectrum width of spontaneous radiation is conditioned by the spatial distribution of sources creat ing the undulating field is considered. In this case gain function of the stimulated radiation is dozens of times higher than that of the conventional undulators. We propose a model of irregular microundulator, which can be used to construct a drastically cheap and compact X-ray free-electron laser operating on medium energy electron bunch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا