From Baking a Cake to Solving the Schrodinger Equation


الملخص بالإنكليزية

The primary emphasis of this study has been to explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. Restricting our consideration to the genoise, one of the basic cakes of classic French cuisine, we have obtained a semi-empirical formula for its baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The formula, which is based on the Diffusion equation, has three adjustable parameters whose values are estimated from data obtained by baking genoises in cylindrical pans of various diameters. The resulting formula for the baking time exhibits the scaling behavior typical of diffusion processes, i.e. the baking time is proportional to the (characteristic length scale)^2 of the cake. It also takes account of evaporation of moisture at the top surface of the cake, which appears to be a dominant factor affecting the baking time of a cake. In solving this problem we have obtained solutions of the Diffusion equation which are interpreted naturally and straightforwardly in the context of heat transfer; however, when interpreted in the context of the Schrodinger equation, they are somewhat peculiar. The solutions describe a system whose mass assumes different values in two different regions of space. Furthermore, the solutions exhibit characteristics similar to the evanescent modes associated with light waves propagating in a wave guide. When we consider the Schrodinger equation as a non-relativistic limit of the Klein-Gordon equation so that it includes a mass term, these are no longer solutions.

تحميل البحث