ترغب بنشر مسار تعليمي؟ اضغط هنا

Secondary electron yield measurements from thin surface coatings for NLC electron cloud reduction

79   0   0.0 ( 0 )
 نشر من قبل Frederic Le Pimpec
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the beam pipe of the positron damping ring of the Next Linear Collider, electrons will be created by beam interaction with the surrounding vacuum chamber wall and give rise to an electron cloud. Several solutions are possible for avoiding the electron cloud, without changing the bunch structure or the diameter of the vacuum chamber. Some of the currently available solutions for preventing this spurious electron load include reducing residual gas ionization by the beam, minimizing beam photon-induced electron production, and lowering the secondary electron yield (SEY) of the chamber wall. We will report on recent SEY measurements performed at SLAC on TiN coatings and TiZrV non-evaporable getter thin films.



قيم البحث

اقرأ أيضاً

We discuss the progress made on a new installation in Fermilabs Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In th e Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.
In the beam pipe of the positron Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary electron emission give rise to an electron cloud which can cause the loss of the circulating beam. One path to avoi d the electron cloud is to ensure that the vacuum wall has low secondary emission yield and, therefore, we need to know the secondary emission yield (SEY) for candidate wall coatings. We report on SEY measurements at SLAC on titanium nitride (TiN) and titanium-zirconium-vanadium (TiZrV) thin sputter-deposited films, as well as describe our experimental setup.
Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the refl ectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.
141 - F. Le Pimpec 2006
In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.
The achievable beam current and beam quality of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the walls of the vacuum chamber can contribute to the growth of th e electron cloud. An apparatus for in-situ measurements of the secondary electron yield (SEY) of samples in the vacuum chamber of the Cornell Electron Storage Ring (CESR) has been developed in connection with EC studies for the CESR Test Accelerator program (CesrTA). The CesrTA in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The SEY chambers can be isolated from the CESR beam pipe, allowing us to exchange samples without venting the CESR vacuum chamber. Measurements so far have been on metal surfaces and EC-mitigation coatings. The goal of the SEY measurement program is to improve predictive models for EC build-up and EC-induced beam effects. This report describes the CesrTA in-situ SEY apparatus, the measurement tool and techniques, and iterative improvements therein.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا