ترغب بنشر مسار تعليمي؟ اضغط هنا

A statistical analysis of acoustic emission signals for tool condition monitoring (TCM)

110   0   0.0 ( 0 )
 نشر من قبل Alberto Petri
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistical properties of acoustic emission signals for tool condition monitoring (TCM) applications in mechanical lathe machining are analyzed in this paper. Time series data and root mean square (RMS) values at various tool wear levels are shown to exhibit features that can be put into relation with ageing in both cases. In particular, the histograms of raw data show power-law distributions above a cross-over value, in which newer cutting tools exhibit more numerous larger events compared with more worn-out ones. For practical purposes, statistics based on RMS values are more feasible, and the analysis of these also reveals discriminating age-related features. The assumption that experimental RMS histograms follow a Beta (b) distribution has also been tested. The residuals of the modeling b functions indicate that the search for a more appropriate fitting function for the experimental distribution is desirable.



قيم البحث

اقرأ أيضاً

Acoustic Emission (AE) data from single point turning machining are analysed in this paper in order to gain a greater insight of the signal statistical properties for Tool Condition Monitoring (TCM) applications. A statistical analysis of the time se ries data amplitude and root mean square (RMS) value at various tool wear levels are performed, �nding that ageing features can be revealed in all cases from the observed experimental histograms. In particular, AE data amplitudes are shown to be distributed with a power-law behaviour above a cross-over value. An analytic model for the RMS values probability density function (pdf) is obtained resorting to the Jaynes maximum entropy principle (MEp); novel technique of constraining the modelling function under few fractional moments, instead of a greater amount of ordinary moments, leads to well-tailored functions for experimental histograms.
RooStatsCms is an object oriented statistical framework based on the RooFit technology. Its scope is to allow the modelling, statistical analysis and combination of multiple search channels for new phenomena in High Energy Physics. It provides a vari ety of methods described in literature implemented as classes, whose design is oriented to the execution of multiple CPU intensive jobs on batch systems or on the Grid.
The RooStatsCms (RSC) software framework allows analysis modelling and combination, statistical studies together with the access to sophisticated graphics routines for results visualisation. The goal of the project is to complement the existing analy ses by means of their combination and accurate statistical studies.
Bayesian inference is a widely used and powerful analytical technique in fields such as astronomy and particle physics but has historically been underutilized in some other disciplines including semiconductor devices. In this work, we introduce Bayes im, a Python package that utilizes adaptive grid sampling to efficiently generate a probability distribution over multiple input parameters to a forward model using a collection of experimental measurements. We discuss the implementation choices made in the code, showcase two examples in photovoltaics, and discuss general prerequisites for the approach to apply to other systems.
91 - D. Napoletani 2005
In this paper we utilize techniques from the theory of non-linear dynamical systems to define a notion of embedding threshold estimators. More specifically we use delay-coordinates embeddings of sets of coefficients of the measured signal (in some ch osen frame) as a data mining tool to separate structures that are likely to be generated by signals belonging to some predetermined data set. We describe a particular variation of the embedding threshold estimator implemented in a windowed Fourier frame, and we apply it to speech signals heavily corrupted with the addition of several types of white noise. Our experimental work seems to suggest that, after training on the data sets of interest,these estimators perform well for a variety of white noise processes and noise intensity levels. The method is compared, for the case of Gaussian white noise, to a block thresholding estimator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا