ﻻ يوجد ملخص باللغة العربية
Understanding the deflection of light by a massive deflector, as well as the associated gravitational lens phenomena, require the use of the theory of General Relativity. I consider here a classical approach, based on Newtons equation of motion for massive particles. These particles are emitted by a distant source and deflected by the gravitational field of a (opaque) star or of a (transparent) galaxy. The dependence of the deviation angle $D$ on the impact parameter $b$, and the geometry of the (source, deflector, earth) triplet, imply that different particle trajectories may reach an earth based observer. Since $D(b)$ does not depend on the mass of the particles, it is tempting to set the particles velocity equal to the speed of light to get a (Newtonian) flavor of gravitational lenses phenomena. Orders of magnitude are obtained through a non technical approach and can be compared to the General Relativity results.
We present a comprehensive introduction to the kinematics of special relativity based on Minkowski diagrams and provide a graphical alternative to each and every topic covered in a standard introductory sequence. Compared to existing literature on th
A concise introduction to quantum entanglement in multipartite systems is presented. We review entanglement of pure quantum states of three--partite systems analyzing the classes of GHZ and W states and discussing the monogamy relations. Special atte
In the past several years, observational entropy has been developed as both a (time-dependent) quantum generalization of Boltzmann entropy, and as a rather general framework to encompass classical and quantum equilibrium and non-equilibrium coarse-gr
We introduce an open source software package UniversalQCompiler written in Mathematica that allows the decomposition of arbitrary quantum operations into a sequence of single-qubit rotations (with arbitrary rotation angles) and controlled-NOT (C-NOT)
We present an automated approach to detect and extract information from the astronomical datasets on the shapes of such objects as galaxies, star clusters and, especially, elongated ones such as the gravitational lenses. First, the Kolmogorov stochas