ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of Proximity Focusing RICH with an aerogel radiator using Flat-panel multi-anode PMTs (Hamamatsu H8500)

60   0   0.0 ( 0 )
 نشر من قبل Takahiro Matsumoto
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Matsumoto




اسأل ChatGPT حول البحث

A proximity focusing ring imaging Cherenkov detector using aerogel as the radiator has been studied for an upgrade of the Belle detector at the KEK-B-factory. We constructed a prototype Cherenkov counter using a 4 x 4 array of 64-channel flat-panel multi-anode PMTs (Hamamatsu H8500) with a large effective area. The aerogel samples were made with a new technique to obtain a higher transmission length at a high refractive index (n=1.05). Multi-channel PMTs are read-out with analog memory chips. The detector was tested at the KEK-PS pi2 beam line in November, 2002. To evaluate systematically the performance of the detector, tests were carried out with various aerogel samples using pion beams with momenta between 0.5 GeV/c and 4 GeV/c. The typical angular resolution was around 14 mrad, and the average number of detected photoelectrons was around 6. We expect that pions and kaons can be separated at a 4 sigma level at 4 GeV/c.



قيم البحث

اقرأ أيضاً

The use of a nonhomogeneous aerogel radiator, i.e. one consisting of layers with different refractive indices, has been shown to improve the resolution of the Cherenkov angle measured with a proximity focusing RICH detector. In order to obtain furthe r information on the performance of such a detector, a simple model has been used to calculate the resolution and search for optimal radiator parameters.
144 - T. Iijima 2005
A proximity focusing ring imaging Cherenkov detector, with the radiator consisting of two or more aerogel layers of different refractive indices, has been tested in 1-4 GeV/c pion beams at KEK. Essentially, a multiple refractive index aerogel radiato r allows for an increase in Cherenkov photon yield on account of the increase in overall radiator thickness, while avoiding the simultaneous degradation in single photon angular resolution associated with the increased uncertainty of the emission point. With the refractive index of consecutive layers suitably increasing in the downstream direction, one may achieve overlapping of the Cherenkov rings from a single charged particle. In the opposite case of decreasing refractive index, one may obtain well separated rings. In the former combination an approximately 40% increase in photon yield is accompanied with just a minor degradation in single photon angular resolution. The impact of this improvement on the pion/kaon separation at the upgraded Belle detector is discussed.
57 - I. Adachi 2003
Using aerogel as radiator and multianode PMTs for photon detection, a proximity focusing Cherenkov ring imaging detector has been constructed and tested in the KEK $pi$2 beam. The aim is to experimentally study the basic parameters such as resolution of the single photon Cherenkov angle and number of detected photons per ring. The resolution obtained is well approximated by estimates of contributions from pixel size and emission point uncertainty. The number of detected photons per Cherenkov ring is in good agreement with estimates based on aerogel and detector characteristics. The values obtained turn out to be rather low, mainly due to Rayleigh scattering and to the relatively large dead space between the photocathodes. A light collection system or a higher fraction of the photomultiplier active area, together with better quality aerogels are expected to improve the situation. The reduction of Cherenkov yield, for charged particle impact in the vicinity of the aerogel tile side wall, has also been measured.
We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jeff erson National Accelerator Facility. For this, a laser working at 407.2nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.
179 - L. Cadamuro , M.Calvi , L. Cassina 2014
The aim of this paper is to fully characterize the new multi-anode photomultiplier tube R11265-103-M64, produced by Hamamatsu. Its high effective active area (77%), its pixel size, the low dark signal rate and the capability to detect single photon s ignals make this tube suitable for an application in high energy physics, such as for RICH detectors. Four tubes and two different bias voltage dividers have been tested. The results of a standard characterization of the gain and the anode uniformity, the dark signal rate, the cross-talk and the device behaviour as a function of temperature have been studied. The behaviour of the tube is studied in a longitudinal magnetic field up to 100 Gauss. Shields made of a high permeability material are also investigated. The deterioration of the device performance due to long time operation at intense light exposure is studied. A quantitative analysis of the variation of the gain and the dark signals rate due to the aging is described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا