ﻻ يوجد ملخص باللغة العربية
Deformations of horizontal liquid interfaces by optical radiation pressure are generally expected to display similar behaviors whatever the direction of propagation of the exciting laser beam is. In the present experiment we find this expectation to be borne out, as long as the cw laser illumination is moderate in strength. However, as a striking contrast in the case of high field strengths, we find that either a large stable tether can be formed, or else that a break-up of the interface can occur, depending on whether the laser beam is upward or downward directed. Physically, the reason for this asymmetry can be traced to whether total reflection can occur or not. We also present two simple theoretical models, one based on geometrical optics, the other on wave optics, that are able to illustrate the essence of the effect. In the case leading to interface disruption our experimental results are compared with those obtained by Zhang and Chang for water droplets under intense laser pulses [Opt. Lett. textbf{13}, 916 (1988)]. A key point in our experimental investigations is to work with a near-critical liquid/liquid interface. The surface tension becomes therefore significantly reduced, which thus enhances the magnitude of the stationary deformations induced.
The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the lights electric field acts upon the (induced) bound charges in the medium, its magnetic fi
Advanced diffractive films may afford advantages over passive reflective surfaces for a variety space missions that use solar or laser in-space propulsion. Three cases are compared: Sun-facing diffractive sails, Littrow diffraction configurations, an
A novel deflection effect of an intense laser beam with spin angular momentum is revealed theoretically by an analytical modeling using radiation pressure and momentum balance of laser plasma interaction in the relativistic regime, as a deviation fro
We show that extreme vacuum pressures can be measured with current technology by detecting the photons produced by the relativistic Thomson scattering of ultra-intense laser light by the electrons of the medium. We compute the amount of radiation sca
Recent years have seen an explosive research and development of nanoplasmonics in the visible and near-infrared (near-ir) frequency regions. One of the most fundamental effects in nanoplasmonics is nano-concentration of optical energy. Plasmonic nano