ﻻ يوجد ملخص باللغة العربية
We adress the problem of interactions between the longitudinal velocity increment and the energy dissipation rate in fully developed turbulence. The coupling between these two quantities is experimentally investigated by the theory of stochastic Markovian processes. The so-called Markov analysis allows for a precise characterization of the joint statistical properties of velocity increment and energy dissipation. In particular, it is possible to determine the differential equation that governs the evolution along scales of the joint probability density of these two quantities. The properties of this equation provide interesting new insights into the coupling between energy dissipation and velocity incrementas leading to small scale intermittency.
We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. T
An experiment was performed using SPIV in the LMFL boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy, $varepsilon = 2 u langle s_{ij}s_{ij} rangle$ where
In three dimensional turbulence there is on average a cascade of kinetic energy from the largest to the smallest scales of the flow. While the dominant idea is that the cascade occurs through the physical process of vortex stretching, evidence for th
An original experimental setup has been elaborated in order to get a better view of turbulent flows in a von Karman geometry. The availability of a very fast camera allowed to follow in time the evolution of the flows. A surprising finding is that th
Features of the turbulent cascade are investigated for various datasets from three different turbulent flows. The analysis is focused on the question as to whether developed turbulent flows show universal small scale features. To answer this question