Application of the Mesh Experiment for the Back-Illuminated CCD: I. Experiment and the Charge Cloud Shape


الملخص بالإنكليزية

We have employed a mesh experiment for back-illuminated (BI) CCDs. BI CCDs possess the same structure to those of FI CCDs. Since X-ray photons enter from the back surface of the CCD, a primary charge cloud is formed far from the electrodes. The primary charge cloud expands through diffusion process until it reaches the potential well that is just below the electrodes. Therefore, the diffusion time for the charge cloud produced is longer than that in the FI CCD, resulting a larger charge cloud shape expected. The mesh experiment enables us to specify the X-ray point of interaction with a subpixel resolution. We then have measured a charge cloud shape produced in the BI CCD. We found that there are two components of the charge cloud shape having different size: a narrow component and a broad component. The size of the narrow component is $2.8-5.7 mu$m in unit of a standard deviation and strongly depends on the attenuation length in Si of incident X-rays. The shorter the attenuation length of X-rays is, the larger the charge cloud becomes. This result is qualitatively consistent with a diffusion model inside the CCD. On the other hand, the size of the broad component is roughly constant of $simeq 13 mu$m and does not depend on X-ray energies. Judging from the design value of the CCD and the fraction of each component, we conclude that the narrow component is originated in the depletion region whereas the broad component is in the field-free region.

تحميل البحث