ﻻ يوجد ملخص باللغة العربية
We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO$_2$ laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to $20 mu$K, efficiently decreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing $^{133}$Cs-$^7$Li collisions is $8 times 10^{-12}$ cm$^2$, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).
We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO$_2$ laser, and allowed to interact for
In recent years, cold atoms could prove their scientific impact not only on ground but in microgravity environments such as the drop tower in Bremen, sounding rockets and parabolic flights. We investigate the preparation of cold atoms in an optical d
Efficient cooling of trapped charged particles is essential to many fundamental physics experiments, to high-precision metrology, and to quantum technology. Until now, sympathetic cooling has required close-range Coulomb interactions, but there has b
We present a novel optical cooling scheme that relies on hyperfine dark states to enhance loading and cooling atoms inside deep optical dipole traps. We demonstrate a seven-fold increase in the number of atoms loaded in the conservative potential wit
Atomic comagnetometers, which measure the spin precession frequencies of overlapped species simultaneously, are widely applied to search for exotic spin-dependent interactions. Here we propose and implement an all-optical single-species Cs atomic com