ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of $P_ and $T_ odd effects in $ sup 205_TIF including electron correlation

47   0   0.0 ( 0 )
 نشر من قبل Alexander N. Petrov
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. N. Petrov




اسأل ChatGPT حول البحث

A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.



قيم البحث

اقرأ أيضاً

We investigate theoretically the long-range electrostatic interactions between a ground-state homonuclear alkali-metal dimer and an excited alkali-metal atom taking into account its fine-structure. The interaction involves the combination of first-or der quadrupole-quadrupole and second-order dipole-dipole effects. Depending on the considered species, the atomic spin-orbit may be comparable to the atom-molecule electrostatic energy and to the dimer rotational structure. Here we extend our general description in the framework of the second-order degenerate perturbation theory [M. Lepers and O. Dulieu, Eur. Phys. J. D, 2011] to various regimes induced by the magnitude of the atomic spin-orbit. A complex dynamics of the atom-molecule may take place at large distances, which may have consequences for the search for an universal model of ultracold inelastic collisions as proposed for instance in [Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. textbf{104}, 113202 (2010)].
115 - Enhua Xu , Motoyuki Uejima , 2018
A full coupled-cluster expansion suitable for sparse algebraic operations is developed by expanding the commutators of the Baker-Campbell-Hausdorff series explicitly for cluster operators in binary representations. A full coupled-cluster reduction th at is capable of providing very accurate solutions of the many-body Schrodinger equation is then initiated employing screenings to the projection manifold and commutator operations. The projection manifold is iteratively updated through the single commutators $leftlangle kappa right| [hat H,hat T]left| 0 rightrangle$ comprised of the primary clusters $hat T_{lambda}$ with substantial contribution to the connectivity. The operation of the commutators is further reduced by introducing a correction, taking into account the so-called exclusion principle violating terms, that provides fast and near-variational convergence in many cases.
Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which imp lements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty h as been to realize in the laboratory low enough collisional velocities between neutral reactants, so that the quantum wave nature could be observed. We report here the first realization of merged neutral supersonic beams, and the observation of clear quantum effects in the resulting reactions. We observe orbiting resonances in the Penning ionization reaction of argon and molecular hydrogen with metastable helium leading to a sharp increase in the absolute reaction rate in the energy range corresponding to a few degrees kelvin down to 10 mK. Our method is widely applicable to many canonical chemical reactions, and will enable a breakthrough in the experimental study of Quantum Chemistry.
UV frequency metrology has been performed on the a3Pi - X1Sigma+ (0,0) band of various isotopologues of CO using a frequency-quadrupled injection-seeded narrow-band pulsed Titanium:Sapphire laser referenced to a frequency comb laser. The band origin is determined with an accuracy of 5 MHz (delta u / u = 3 * 10^-9), while the energy differences between rotational levels in the a3Pi state are determined with an accuracy of 500 kHz. From these measurements, in combination with previously published radiofrequency and microwave data, a new set of molecular constants is obtained that describes the level structure of the a3Pi state of 12C16O and 13C16O with improved accuracy. Transitions in the different isotopologues are well reproduced by scaling the molecular constants of 12C16O via the common mass-scaling rules. Only the value of the band origin could not be scaled, indicative of a breakdown of the Born-Oppenheimer approximation. Our analysis confirms the extreme sensitivity of two-photon microwave transitions between nearly-degenerate rotational levels of different Omega-manifolds for probing a possible variation of the proton-to-electron mass ratio, mu=m_p/m_e, on a laboratory time scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا