ﻻ يوجد ملخص باللغة العربية
Basic properties of the mid-latitude large-scale traveling ionospheric disturbances (LS TIDs) during the maximum phase of a strong magnetic storm of 6-8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics, (51.9 deg. N, 103.0 deg. E) and MORTI located at the observatory of the Institute of Ionosphere (43.2 deg. N, 77.0 deg. E). Observations of the O (557.7 nm, 630.0 nm, 360-410 nm, and 720-830 nm) emissions originating from atmospheric layers centered at altitudes of 90 km, 97 km, and 250 km were carried out at Irkutsk and of the O_2 (866.5 nm) emission originating from an atmospheric layer centered at altitude of 95 km was carried out at Almaty. Variations of the f_0F2 and virtual altitude of the F2 layer were measured at Almaty as well. An analysis of data was performed for the time interval 17.00-21.00 UT comprising a maximum of the Dst derivative. Results have shown that the storm-induced solitary large-scale wave with duration of 1 hour and with the front width of 5000 km moved equatorward with the velocity of 200 ms-1 to a distance of no less than 1000 km. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes.
In this paper an attempt is made to verify the hypothesis on the role of geomagnetic disturbances as a factor determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we have used the ba
During strong magnetic storms, the errors of determination of the range, frequency Doppler shift and angles of arrival of transionospheric radio signals exceeds the one for magnetically quiet days by one order of magnitude as a minimum. This can be t
In this paper the interrelation between geomagnetic pulsations and variations in frequency Doppler shift (Fd) of the ionosphere-reflected radio signal is under investigation. The experiment on simultaneous recording of Fd variations and geomagnetic p
Reaching the thermal noise at low frequencies with the next generation of instruments (e.g. SKA, LOFAR etc.) is going to be a challenge. It requires the development of more advanced techniques of calibration compared to those used from the traditiona
Using the geomagnetic storm of July 15, 2000 as an example, we investigated the dependence of GPS navigation system performance on the nightside at mid-latitudes on the level of geomagnetic disturbance. The investigation was based on the data from th