ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Determination of the Characteristics of a Positron Source Using Channeling

79   0   0.0 ( 0 )
 نشر من قبل Chehab
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical simulations and `proof of principle experiments showed clearly the interest of using crystals as photon generators dedicated to intense positron sources for linear colliders. An experimental investigation, using a 10 GeV secondary electron beam, of the SPS-CERN, impinging on an axially oriented thick tungsten crystal, has been prepared and operated between May and August 2000. After a short recall on the main features of positron sources using channeling in oriented crystals, the experimental set-up is described. A particular emphasis is put on the positron detector made of a drift chamber, partially immersed in a magnetic field. The enhancement in photon and positron production in the aligned crystal have been observed in the energy range 5 to 40 GeV, for the incident electrons, in crystals of 4 and 8 mm as in an hybrid target. The first results concerning this experiment are presented hereafter.



قيم البحث

اقرأ أيضاً

The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities.
The design of the positron source for the International Linear Collider (ILC) is still under consideration. The baseline design plans to use the electron beam for the positron production before it goes to the IP. The high-energy electrons pass a long helical undulator and generate an intense circularly polarized photon beam which hits a thin conversion target to produce $e^+e^-$ pairs. The resulting positron beam is longitudinally polarized which provides an important benefit for precision physics analyses. In this paper the status of the design studies is presented with focus on ILC250. In particular, the target design and cooling as well as issues of the optical matching device are important for the positron yield. Some possibilities to optimize the system are discussed.
Under coherent interactions, particles undergo correlated collisions with the crystal lattice and their motion result in confinement in the fields of atomic planes, i.e. particle channeling. Other than coherently interacting with the lattice, particl es also suffer incoherent interactions with individual nuclei and may leave their bounded motion, i.e., they de-channel. This latter is the main limiting factor for applications of coherent interactions in crystal-assisted particle steering. We experimentally investigated the nature of dechanneling of 120 GeV/c $e^{-}$ and $e^{+}$ in a bent silicon crystal at H4-SPS external line at CERN. We found out that while channeling efficiency differs significantly for $e^{-}$ ($2pm2$ $%$) and $e^{+}$ ($54pm2$ $%$), their nuclear dechanneling length is comparable, $(0.6pm0.1)$ mm for $e^{-}$ and $(0.7pm0.3)$ mm for $e^{+}$. The experimental proof of the equality of the nuclear dechanneling length for positrons and electrons is interpreted in terms of similar dynamics undergone by the channeled particles in the field of nuclei no matter of their charge.
67 - Sabine Riemann 2020
The design of the positron source for the International Linear Collider (ILC) is still under discussion. The baseline design plans to use the high-energy electron beam for the positron production before it goes to the IP. The electrons pass a long he lical undulator and generate an intense circularly polarized photon beam which hits a thin conversion target to produce $e^+e^-$ pairs. The resulting positron beam is longitudinally polarized which provides an important benefit for precision physics analyses at the ILC. In this paper the status of the positron target design studies is presented. Focus is the positron yield for center-of-mass energies of 250 GeV and also the Z peak. Possibilities to improve the positron collection system and thus to increase the positron yield are discussed.
134 - V. Kovalenko 2012
In order to achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The baseline design at the International Linear Collider (ILC) foresees an e+ source based on helical undulator. Such a source provides high luminosity and polarizations. The positron source planned for ILC is based on a helical undulator system and can deliver a positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the e- and e+ beams from the source to the interaction region, precise spin tracking has to be included in all transport elements which can contribute to a loss of polarization, i.e. the initial accelerating structures, the damping rings, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. In the talk recent results of positron spin tracking simulation at the source are presented. The positron yield and polarization are also discussed depending on the geometry of source elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا