ﻻ يوجد ملخص باللغة العربية
Radiative decays of decuplet hyperons and octet hyperon charge radii are evaluated in a chiral constituent quark model emphasizing the role of exchange currents. Exchange currents largely cancel for the M1 decay amplitudes, while they dominate the E2 amplitude. Due to the pseudoscalar meson cloud the charge radii of Sigma^- and Xi^- are almost as large as the proton radius, in agreement with recent experimental results from SELEX. Strangeness suppression is weakened by exchange currents for several observables.
A short overview of motivations and successes of two-body exchange currents between constituent quarks for electromagnetic hadron observables like charge radii, magnetic and quadrupole moments is given. We then predict and analyze exchange current ef
Octet hyperon charge radii are calculated in a chiral constituent quark model including electromagnetic exchange currents between quarks. In impulse approximation one observes a decrease of the hyperon charge radii with increasing strangeness. This e
We calculate the contribution to the polarization of $Lambda$ hyperons in relativistic nuclear collisions at high energy from the decays of $Sigma^*(1385)$ and $Sigma^0$, which are the predominant sources of $Lambda$ production besides the primary co
We calculate potentials between a proton and a $Xi^0$ (hyperon with strangeness -2) through the equal-time Bethe-Salpeter wave function, employing quenched lattice QCD simulations with the plaquette gauge action and the Wilson quark action on (4.5 fm
Electromagnetic form factors of hyperons ($Lambda$, $Sigma$, $Xi$) in the timelike region, accessible in the reaction $e^+e^- to bar YY$, are studied. The focus is on energies close to the reaction thresholds, where the properties of these form facto