ﻻ يوجد ملخص باللغة العربية
The squeeze-out phenomenon of $K^+$ and $K^-$ mesons, i.e. the azimuthal asymmetry of $K^+$ and $K^-$ mesons emitted at midrapidity in heavy ion reactions, is investigated for beam energies of 1-2 A.GeV. It is found that the squeeze-out signal is strongly affected by in-medium potentials of these mesons. The repulsive $K^+$-nucleus potential gives rise to a pronounced out-of-plane emission of $K^+$s at midrapidity. With the $K^+$ potential we reproduce well the experimental data of the $K^+$ azimuthal distribution. It is found that the attractive $K^-$-nucleus potential cancels to a large extent the influence of rescattering and reabsorption of the $K^-$ mesons on the projectile and target residuals (i.e. shadowing). This results in an azimuthally isotropic emission of the midrapidity $K^-$ mesons with transverse momentum up to 0.8 GeV/c. Since it is well accepted that the shadowing alone would lead to a significant out-of-plane preference of particle emission, in particular at high transverse momenta, the disappearance of the out-of-plane preference for the $K^-$ mesons can serve as an unambiguous signal of the attractive $K^-$ potential. We also apply a covariant formalism of the kaon dynamics to the squeeze-out phenomenon. Discrepancies between the theory and the experiments and possible solutions are discussed.
We discuss the relevance of chaotic scattering in heavy--ion reactions at energies around the Coulomb barrier. A model in two and three dimensions which takes into account rotational degrees of freedom is discussed both classically and quantum-mechan
We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the
Relative hadron abundances from high-energy heavy-ion collisions reveal substantial inhomogeneities of temperature and baryon-chemical potential within the decoupling volume. The freeze-out volume is not perfectly stirred, i.e. the concentrations of
The probability of the formation and decay of a dinuclear system is investigated for a wide range of relative orbital angular momentum values. The mass and angular distributions of the quasifission fragments are studied to understand the reaction mec
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia