ﻻ يوجد ملخص باللغة العربية
The deuteron deep inelastic unpolarized structure function F_2^D is calculated using the Wilson operator product expansion method. The long distance behaviour, related to the deuteron bound state properties, is evaluated using the Bethe-Salpeter equation with one particle on mass shell. The calculation of the ratio F_2^D/F_2^N is compared with other convolution models showing important deviations in the region of large x. The implications in the evaluation of the neutron structure function from combined data on deuterons and protons are discussed.
Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the
We measured the $g_1$ spin structure function of the deuteron at low $Q^{2}$, where QCD can be approximated with chiral perturbation theory ($chi$PT). The data cover the resonance region, up to an invariant mass of $Wapprox1.9$~GeV. The generalized G
We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contrib
Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the deuteron with realistic interaction kernel including the exchange of pi, sigma, omega, rho, eta and delta mesons, are used to systematically investigate relativistic effects in
First data on coherent threshold pi^0 electroproduction from the deuteron taken by the A1 Collaboration at the Mainz Microtron MAMI are presented. At a four-momentum transfer of q^2=-0.1 GeV^2/c^2 the full solid angle was covered up to a center-of-ma