ﻻ يوجد ملخص باللغة العربية
$K_{ell 3}$ and $pi_{e 3}$ transition form factors are calculated as an application of Dyson-Schwinger equations. The role of nonanalytic contributions to the quark--W-boson vertex is elucidated. A one-parameter model for this vertex provides a uniformly good description of these transitions, including the value of the scalar form factor of the kaon at the Callan-Treiman point. The $K_{ell 3}$ form factors, $f_pm^K$, are approximately linear on $tin [m_e^2,m_mu^2]$ and have approximately the same slope. $f_-^K(0)$ is a measure of the Euclidean constituent-quark mass ratio: $M^E_s/M^E_u$. In the isospin symmetric limit: $-f_+^pi(0)= F_pi(t)$, the electromagnetic pion form factor, and $f_-^pi(t)equiv 0$.
We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to $mathcal{O}(p^4)$ in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are
A SU(2) effective lagrangian is extended to a $SU_{L}(3)otimes SU_{R}(3)$ by including the vector and axial vector meson. With this effective lagrangian, electromagnetic form factors of charged pion and kaon are calculated. The pseudoscalar meson loo
We compute nucleon and Roper e.m. elastic and transition form factors using a symmetry-preserving treatment of a contact-interaction. Obtained thereby, the e.m. interactions of baryons are typically described by hard form factors. In contrasting this
We study the radiative transitions between vector and pseudoscalar quarkonia in the light-front Hamiltonian approach, and investigate the effects of using different current component and different reference frames. In practical calculations with trun
We present the calculation of the $K_{l3}$ form factors with $N_f = 2 + 1$ nonperturbatively $O(a)$-improved Wilson quark action and Iwasaki gauge action at the physical point on a large volume of (10.9 fm)$^3$ at one lattice spacing of $a = 0.085$ f