ﻻ يوجد ملخص باللغة العربية
We calculate the electromagnetic moments and radii of the Delta(1232) in the nonrelativistic quark model, including two-body exchange currents. We show that two-body exchange currents lead to nonvanishing Delta and N-->Delta transition quadrupole moments even if the wave functions have no D-state admixture. The usual explanation based on the single-quark transition model involves D-state admixtures but no exchange currents. We derive a parameter- free relation between the N-->Delta transition quadrupole moment and the neutron charge radius: Q(N-->Delta) = r^2(neutron)/sqrt(2). Furthermore, we calculate the M1 and E2 amplitudes for the process photon + N -->Delta. We find that the E2 amplitude receives sizeable contributions from exchange currents. These are more important than the ones which result from D-state admixtures due to tensor forces between quarks if a reasonable quark core radius of about 0.6 fm is used. We obtain a ratio of E2/M1=-3.5%.
The E2/M1 ratio (EMR) of the $Delta$(1232) is extracted from the world data in pion photoproduction by means of an Effective Lagrangian Approach (ELA).This quantity has been derived within a crossing symmetric, gauge invariant, and chiral symmetric L
We investigate the model dependence and the importance of choice of database in extracting the {it physical} nucleon-Delta(1232) electromagnetic transition amplitudes, of interest to QCD and baryon structure, from the pion photoproduction observables
We discuss the pole mass and the width of the $Delta(1232)$ resonance to third order in chiral effective field theory. In our calculation we choose the complex-mass renormalization scheme (CMS) and show that the CMS provides a consistent power-counti
We report on new p$(e,e^prime p)pi^circ$ measurements at the $Delta^{+}(1232)$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for
We calculate the strong couplings of pions to the Delta(1232) resonance using a QCD parameterization method that includes in addition to the usual one-quark also two-quark and previously uncalculated three-quark operators. We find that three-quark op