ﻻ يوجد ملخص باللغة العربية
We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy average we study the classical limit of the resulting three-dimensional kinetic equations. There are only two independent spinor components in this limit, the mass density and the spin density, and we derive also their covariant equations of motion. We then show that the equal-time kinetic equation provides a complete description only for constant external electromagnetic fields, but is in general incomplete. It must be supplemented by additional constraints which we derive explicitly from the covariant formulation.
A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction is developed. This effective QED theory properly includes the effects of va
In this paper, we compare the RMF theory and the model of deformed oscillator shells (DOS) in description of the quantum properties of the bound states of the spherically symmetric light nuclei. We obtain an explicit analytical relation between diffe
We derive a quantum kinetic theory for QED including both elastic and inelastic collisions with screening effect. By assuming parity invariance at the lowest order in $hbar$, we find the classical limit of the kinetic theory generalizes the well-know
Within the relativistic quantum field theory, we analyze the differences between the $pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered
Relativistic quantum molecular dynamics based on the relativistic mean field theory (RQMD.RMF) is extended by including momentum-dependent potential. The equation of state (EoS) dependence of the directed and the elliptic flow of protons in the beam