ﻻ يوجد ملخص باللغة العربية
In relativistic heavy-ion collisions, the strong Lorentz-contracted electromagnetic fields are capable of producing copious numbers of lepton pairs through the two-photon mechanism. Monte Carlo techniques have been developed that allow the exact calculation of production by this mechanism when a semi-classical approximation is made to the motion of the two ions. Here, we develop a hybrid Monte Carlo technique that enables us to calculate the impact parameter dependence of the two-photon mechanism for lepton-pair production, and by using this result, we obtain the probability distribution for multiple-pair production as a function of impact parameter. Computations are performed for S$+$Au and Pb$+$Pb systems at 200 A GeV and 160 A GeV, respectively. We also compare our results with the equivalent photon approximation and elucidate the differences.
The heavy ion probability for continuum e+ e- pair production has been calculated to all orders in Z alpha as a function of impact parameter. The formula resulting from an exact solution of the semiclassical Dirac equation in the ultrarelativistic li
We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic heavy-ion transits. In this context the Weizsacker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the p
We study the role of impact parameter on the collective flow and its disappearance for different mass asymmetric reactions. The mass asymmetry is varied from 0 to 0.7 keeping the total mass of the system fixed. Our results clearly indicate a signific
The STAR collaboration at RHIC is measuring the production of electron-positron pairs at small impact parameters, larger than but already close to the range, where the ions interact strongly with each other. We calculate the total cross section, as w
Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. H