ﻻ يوجد ملخص باللغة العربية
We calculate the subthreshold production of antiprotons in the Lorentz-covariant RBUU approach employing a weighted testparticle method to treat the antiproton propagation and absorption nonperturbatively. We find that the pbar differential cross sections are highly sensitive to the baryon and antiproton selfenergies in the dense baryonic environment. Adopting the baryon scalar and vector selfenergies from the empirical optical potential for proton-nucleus elastic scattering and from Dirac-Brueckner calculations at higher density rho > rho_0 we examine the differential pbar spectra as a function of the antiproton selfenergy. A detailed comparison with the available experimental data for p-nucleus and nucleus-nucleus reactions shows that the antiproton feels a moderately attractive mean-field at normal nuclear matter density rho_0 which is in line with a dispersive potential extracted from the free annihilation cross section.
The production of antiprotons in proton-nucleus and nucleus-nucleus reactions is calculated within the relativistic BUU approach employing proper selfenergies for the baryons and antiprotons and treating the p-bar annihilation nonperturbatively. The
The results of the microscopic transport calculations of $bar p$-nucleus interactions within a GiBUU model are presented. The dominating mechanism of hyperon production is the strangeness exchange processes $bar K N to Y pi$ and $bar K N to Xi K$. Th
Prompt photons produced in a hard reaction are not accompanied with any final state interaction, either energy loss or absorption. Therefore, besides the Cronin enhancement at medium transverse momenta pT and small isotopic corrections at larger pT,
The number of particles detected in a nucleus-nucleus collision strongly depends on the impact parameter of the collision. Therefore, multiplicity fluctuations, as well as rapidity correlations of multiplicities, are dominated by impact parameter flu
Particle number fluctuations and correlations in nucleus-nucleus collisions at SPS and RHIC energies are studied within the statistical hadron-resonance gas model in different statistical ensembles and in the Hadron-String-Dynamics (HSD) transport ap