ﻻ يوجد ملخص باللغة العربية
The multiplicity fluctuations are studied in the van der Waals excluded volume hadron-resonance gas model. The calculations are done in the grand canonical ensemble within the Boltzmann statistics approximation. The scaled variances for positive, negative and all charged hadrons are calculated along the chemical freeze-out line of nucleus-nucleus collisions at different collision energies. The multiplicity fluctuations are found to be suppressed in the van der Waals gas. The numerical calculations are presented for two values of hard-core hadron radius, $r=0.3$ fm and 0.5 fm, as well as for the upper limit of the excluded volume suppression effects.
The shear viscosity $eta$ in the van der Waals excluded volume hadron-resonance gas model is considered. For the shear viscosity the result of the non-relativistic gas of hard-core particles is extended to the mixture of particles with different mass
In this work we discuss a modified version of Excluded Volume Hadron Resonance Gas model and also study the effect of Lorentz contraction of the excluded volume on scaled pressure and susceptibilities of conserved charges. We find that the Lorentz co
Particle number fluctuations and correlations in nucleus-nucleus collisions at SPS and RHIC energies are studied within the statistical hadron-resonance gas model in different statistical ensembles and in the Hadron-String-Dynamics (HSD) transport ap
Even though the first momenta i.e. the ensemble average quantities in canonical ensemble (CE) give the grand canonical (GC) results in large multiplicity limit, the fluctuations involving second moments do not respect this asymptotic behaviour. Inste
Multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. In the canonical ensemble conservation of three charges (baryon number, electric charge,