ﻻ يوجد ملخص باللغة العربية
We calculate the transverse momentum and invariant mass dependence of elliptic flow of thermal dileptons for Au+Au collisions at the Relativistic Heavy Ion Collider. The system is described using hydrodynamics, with the assumption of formation of a thermalized quark-gluon plasma at some early time, followed by cooling through expansion, hadronization and decoupling. Dileptons are emitted throughout the expansion history: by annihilation of quarks and anti-quarks inthe early quark-gluon plasma stage and through a set of hadronic reactions during the late hadronic stage. The resulting differential elliptic flow exhibits a rich structure, with different dilepton mass windows providing access to different stages of the expansion history. Elliptic flow measurements for dileptons,combined with those of hadrons and direct photons, are a powerful tool for mapping the time-evolution of heavy-ion collisions.
Predictions are made for elliptic flow in collisions of polarized deuterons with a heavy nucleus. It is shown that the eccentricity of the initial fireball, evaluated with respect to the deuteron polarization axis perpendicular to the beam direction,
The NA60 experiment at the CERN SPS has studied dimuon production in 158 AGeV In-In collisions. The strong pair excess above the known sources found in the mass region $0.2<M<2.5$ GeV has been previously interpreted as thermal radiation. In this pape
Estimates for elliptic flow in collisions of polarized light nuclei with spin $jge1$ with a heavy nucleus are presented. In such collisions the azimuthal symmetry is broken via polarization of the wave function of the light nucleus, resulting in nonz
The NA60 experiment at the CERN SPS has studied dimuon production in 158A GeV In-In collisions. The strong excess of pairs above the known sources found in the complete mass region 0.2<M<2.6 GeV has previously been interpreted as thermal radiation. W
We study effects of eccentricity fluctuations on the elliptic flow coefficient v_2 at mid-rapidity in both Au+Au and Cu+Cu collisions at sqrt{s_NN}=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quar