ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous viscosity of an expanding quark-gluon plasma

69   0   0.0 ( 0 )
 نشر من قبل Yuki Asakawa
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from interactions with dynamically generated colour fields. The anomalous viscosity dominates over the collisional viscosity for large velocity gradients or weak coupling. This effect may provide an explanation for the apparent near perfect liquidity of the matter produced in nuclear collisions at RHIC without the assumption that it is a strongly coupled state.



قيم البحث

اقرأ أيضاً

118 - Golam Sarwar , Jan-e Alam 2015
Evolution of spatially anisotropic perturbation created in the system formed after Relativistic Heavy Ion Collisions has been studied. The microscopic evolution of the fluctuations has been examined within the ambit of Boltzmann Transport Equation (B TE) in a hydrodynamically expanding background. The expansion of the background composed of Quark Gluon Plasma (QGP) is treated within the framework of relativistic hydrodynamics. Spatial anisotropic fluctuations with different geometry have been evolved through Boltzmann equation. It is observed that the trace of such fluctuation survive the evolution. Within the relaxation time approximation analytical results have been obtained for the evolution of these anisotropies. Explicit relations between fluctuations and transport coefficients have been derived. The mixing of various Fourier (or $k$) modes of the perturbations during the evolution of the system has been explicitly demonstrated. This study is very useful in understanding the presumption that the measured anisotropies in the data from heavy ion collisions at relativistic energies imitate the initial state effects. The evolution of correlation function for the perturbation in pressure has been studied and shown that the initial correlation between two neighbouring points in real space evolves to a constant value at later time which gives rise to Dirac delta function for the correlation function in Fourier space. The power spectrum of the fluctuation in thermodynamic quantities (like temperature estimated in this work) can be connected to the fluctuation in transverse momentum of the thermal hadrons measured experimentally. The bulk viscous coefficient of the QGP has been estimated by using correlations of pressure fluctuation with the help of Green-Kubo relation. Angular power spectrum of the anisotropies has been estimated in the appendix.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio eta/s on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions. We find that the elliptic flow in sqrt (s_NN) = 200 GeV Au+Au collisions at RHIC is dominated by the viscosity in the hadronic phase and in the phase transition region, but largely insensitive to the viscosity of the quark-gluon plasma (QGP). At the highest LHC energy, the elliptic flow becomes sensitive to the QGP viscosity and insensitive to the hadronic viscosity.
68 - Jasmine Brewer , Li Yan , 2019
We propose a new scenario characterizing the transition of the quark-gluon plasma (QGP) produced in heavy-ion collisions from a highly non-equilibrium state at early times toward a fluid described by hydrodynamics at late times. We develop an analogy to the evolution of a quantum mechanical system that is governed by the instantaneous ground states. In the simplest case, these slow modes are pre-hydrodynamic in the sense that they are initially distinct from, but evolve continuously into, hydrodynamic modes. For a class of collision integrals, the pre-hydrodynamic mode represents the angular distribution (in momentum space) of those gluons that carry most of the energy. We illustrate this scenario using a kinetic description of weakly-coupled Bjorken expanding plasma. Rapid longitudinal expansion drives a reduction in the degrees of freedom at early times. In the relaxation time approximation for the collision integral, we show quantitatively that the full kinetic theory evolution is dominated by the pre-hydrodynamic mode. We elaborate on the criterion for the dominance of pre-hydrodynamic slow modes and speculate that adiabatic hydrodynamization may describe the pre-equilibrium behavior of the QGP produced in heavy-ion collisions.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the Pythia event generator tuned to fit the transverse momentum spectr um and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM) which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross section are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation depending on transverse momentum. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. Finally, the nuclear modification factor $rm R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{rm NN}}$ =200 GeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $rm R_{AA}$ versus $p_T$ reflects the heavy quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $rm R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا