ﻻ يوجد ملخص باللغة العربية
The eXtended Continuum Discretized Coupled Channel (XCDCC) method is developed to treat reactions where core degrees of freedom play a role. The projectile is treated as a multi-configuration coupled channels system generated from a valence particle coupled to a deformed core which is allowed to excite. The coupled channels initial state breaks up into a coupled channels continuum which is discretized into bins, similarly to the original CDCC method. Core collective degrees of freedom are also included in the interaction of the core and the target, so that dynamical effects can occur during the reaction. We present results for the breakup of $^{17}$C=$^{16}$C+n and $^{11}$Be=$^{10}$Be+n on $^{9}$Be. Results show that the total cross section increases with core deformation. More importantly, the relative percentage of the various components of the initial state are modified during the reaction process through dynamical effects. This implies that comparing spectroscopic factors from structure calculations with experimental cross sections requires more detailed reaction models that go beyond the single particle model.
Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the lo
We extend the virial equation of state to include 3H and 3He nuclei, and predict significant mass-three fractions near the neutrinosphere in supernovae. While alpha particles are often more abundant, we demonstrate that energy transfer cross-sections
Quantum fluctuations concerning the shape of nuclei are treated within the framework of covariant density functional theory. Long range correlations beyond mean field are taken into account by configuration mixing of wave functions with triaxial shap
The continuum-discretized coupled-channels (CDCC) method is used to study the breakup of weakly-bound nuclei at intermediate energies collisions. For large impact parameters, the Eikonal CDCC (E-CDCC) method was applied. The effects of Lorentz contra
We calculate the nuclear induced breakup of Be11 and B8 using a more realistic treatment of the diffraction and stripping processes than in previous work. The breakup is treated in the eikonal approximation with a profile function calculated from a r