ترغب بنشر مسار تعليمي؟ اضغط هنا

Sum rules of single-particle spectral functions in hot asymmetric nuclear matter

66   0   0.0 ( 0 )
 نشر من قبل Arnau Rios
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron and proton single-particle spectral functions in asymmetric nuclear matter fulfill energy weighted sum rules. The validity of these sum rules within the self-consistent Greens function approach is investigated. The various contributions to these sum rules and their convergence as a function of energy provide information about correlations induced by the realistic interaction between the nucleons. These features are studied as a function of the asymmetry of nuclear matter.



قيم البحث

اقرأ أيضاً

121 - A. Rios , A. Carbone , A. Polls 2017
Background: The energy weighted sum rules of the single-particle spectral functions provide a quantitative understanding of the fragmentation of nuclear states due to short-range and tensor correlations. Purpose: The aim of this paper is to compare o n a quantitative basis the single-particle spectral function generated by different nuclear hamiltonians in symmetric nuclear matter using the first three energy-weighted moments. Method: The spectral functions are calculated in the framework of the self-consistent Greens function approach at finite temperature within a ladder resummation scheme. We analyze the first three moments of the spectral function and connect these to the correlations induced by the interactions between the nucleons. In particular, the variance of the spectral function is directly linked to the dispersive contribution of the self-energy. The discussion is centred around two- and three-body chiral nuclear interactions, with and without renormalization, but we also provide results obtained with the traditional phase-shift-equivalent CD-Bonn and Av18 potentials. Results: The variance of the spectral function is particularly sensitive to the short-range structure of the force, with hard-core interactions providing large variances. Chiral forces yield variances which are an order of magnitude smaller and, when tamed using the similarity renormalization group, the variance reduces significantly and in proportion to the renormalization scale. The presence of three-body forces does not substantially affect the results. Conclusions: The first three moments of the spectral function are useful tools in analysing the importance of correlations in nuclear ground states. In particular, the second-order moment provides a direct insight into dispersive contributions to the self-energy and its value is indicative of the fragmentation of single-particle states.
We study the medium modifications of the spectral functions as well as production cross-sections of the strange vector mesons ($phi$, $K^*$ and $bar {K^*}$) in isospin asymmetric strange hadronic matter. These are obtained from the in-medium masses o f the open strange mesons and the decay widths $phi rightarrow Kbar K$, $K^* rightarrow Kpi$ and $bar {K^*} rightarrow {bar K}pi$ in the hadronic medium. The decay widths are computed using a field theoretic model of composite hadrons with quark/antiquark constituents, from the matrix element of the light quark-antiquark pair creation term of the free Dirac Hamiltonian between the initial and final states. The matrix element is multiplied with a coupling strength parameter for the light quark-antiquark pair creation, which is fitted to the observed vacuum decay width of the decay process. There are observed to be substantial modifications of the spectral functions as well as production cross-sections of these vector mesons due to isospin asymmetry as well as strangeness of the hadronic medum at high densities. These studies should have observable consequences, e.g. in the yield of the hidden and open strange mesons arising from the isospin asymmetric high energy heavy ion collisions at the Compressed baryonic matter (CBM) experiments at the future facility at GSI.
334 - W. Zuo , Z. H. Li , U. Lombardo 2008
The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed.
The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM) is related with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in ANM described within relativi stic mean field hadron models, both with constant and density dependent couplings at zero and finite temperatures. In calculating the proton and neutron chemical potentials we have used an expansion in terms of Bessel functions that is convenient at low densities. The role of the isovector scalar $delta$-meson is also investigated in the framework of relativistic mean field models and density dependent hadronic models. It is shown that the main differences occur at finite temperature and large isospin asymmetry close to the boundary of the instability regions.
We explore the appearance of light clusters at high densities of collapsing stellar cores. Special attention is paid to the unstable isotope H4, which was not included in previous studies. The importance of light clusters in the calculation of rates for neutrino matter interaction is discussed. The main conclusion is that thermodynamic quantities are only weakly sensitive to the chemical composition. The change in pressure and hence the direct change in collapse dynamics will be minor. But the change in neutrino heating and neutronization processes can be significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا