ﻻ يوجد ملخص باللغة العربية
Theoretical results for giant resonances in the three doubly magic exotic nuclei $^{78}$Ni, $^{100}$Sn and $^{132}$Sn are obtained from Hartree-Fock (HF) plus Random Phase Approximation (RPA) calculations using the D1S parametrization of the Gogny two-body effective interaction. Special attention is paid to full consistency between the HF field and the RPA particle-hole residual interaction. The results for the exotic nuclei, on average, appear similar to those of stable ones, especially for quadrupole and octupole states. More exotic systems have to be studied in order to confirm such a trend. The low energy of the monopole resonance in $^{78}$Ni suggests that the compression modulus in this neutron rich nucleus is lower than the one of stable ones.
We propose the universal approach to describe spreading widths of monopole, dipole and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between
Background: The half-life of the famous $^{14}$C $beta$ decay is anomalously long, with different mechanisms: the tensor force, cross-shell mixing, and three-body forces, proposed to explain the cancellations that lead to a small transition matrix el
Lately we have been tackling the problem of describing nuclear collective excitations starting from correlated realistic nucleon-nucleon (NN) interactions. The latter are constructed within the Unitary Correlation Operator Method (UCOM), starting fro
Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the lo
We present ab initio calculations of resonances for $^7$He, a nucleus with no bound states, using the realistic nucleon-nucleon interaction Daejeon16. For this, we evaluate the $n{-}{^6rm He}$ elastic scattering phase shifts obtained within an $S$-ma