ﻻ يوجد ملخص باللغة العربية
We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A$cdot$GeV: here the hydrodynamic model has predicted the collapse of the $v_1$-flow and of the $v_2$-flow at $sim 10$ A$cdot$GeV; at 40 A$cdot$GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density $rho_B$. Moreover, the connection of the elliptic flow $v_2$ to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially ($<$ 50%) be due to hadronic rescattering. Furthermore, the change in sign of $v_1, v_2$ closer to beam rapidity is related to the occurence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A$cdot$GeV.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr
We study the effect of enforcing exact conservation of charges in statistical models of particle production for systems as large as those relevant to relativistic heavy ion collisions. By using a numerical method developed for small systems, we have
Enforcing exact conservation laws instead of average ones in statistical thermal models for relativistic heavy ion reactions gives raise to so called canonical effect, which can be used to explain some enhancement effects when going from elementary (
The nonextensive one-dimensional version of a hydrodynamical model for multiparticle production processes is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and characterized by a nonextensivity
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in textit{A}+textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generaliz