ﻻ يوجد ملخص باللغة العربية
We point out that during the supernova II type explosion the thermodynamical condition of stellar matter between the protoneutron star and the shock front corresponds to the nuclear liquid-gas phase coexistence region, which can be investigated in nuclear multifragmentation reactions. We have demonstrated, that neutron-rich hot heavy nuclei can be produced in this region. The production of these nuclei may influence dynamics of the explosion and contribute to the synthesis of heavy elements.
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in pa
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we
We present an update of the event generator based on the three-fluid dynamics (3FD), complemented by Ultra-relativistic Quantum Molecular Dynamics (UrQMD) for the late stage of the nuclear collision~-- the three-fluid Hydrodynamics-based Event Simula
During the collapse of massive stars, and the supernova type-II explosions, stellar matter reaches densities and temperatures which are similar to the ones obtained in intermediate-energy nucleus-nucleus collisions. The nuclear multifragmentation rea
Rapidity-odd directed flow in heavy ion collisions can originate from two very distinct sources in the collision dynamics i. an initial tilt of the fireball in the reaction plane that generates directed flow of the constituents independent of their c