ترغب بنشر مسار تعليمي؟ اضغط هنا

Vector mesons in a relativistic point-form approach

73   0   0.0 ( 0 )
 نشر من قبل Wolfgang Schweiger
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the point form of relativistic quantum mechanics to develop a Poincare invariant coupled-channel formalism for two-particle systems interacting via one-particle exchange. This approach takes the exchange particle explicitly into account and leads to a generalized eigenvalue equation for the Bakamjian-Thomas type mass operator of the system. The coupling of the exchange particle is derived from quantum field theory. As an illustrative example we consider vector mesons within the chiral constituent quark model in which the hyperfine interaction between the confined quark-antiquark pair is generated by Goldstone-boson exchange. We study the effect of retardation in the Goldstone-boson exchange by comparing with the commonly used instantaneous approximation. As a nice physical feature we find that the problem of a too large $rho$-$omega$ splitting can nearly be avoided by taking the dynamics of the exchange meson explicitly into account.



قيم البحث

اقرأ أيضاً

A symmetry-preserving approach to the two valence-body continuum bound-state problem is used to calculate the elastic electromagnetic form factors of the $rho$-meson and subsequently to study the evolution of vector-meson form factors with current-qu ark mass. To facilitate a range of additional comparisons, $K^ast$ form factors are also computed. The analysis reveals that: vector mesons are larger than pseudoscalar mesons; composite vector mesons are non-spherical, with magnetic and quadrupole moments that deviate $sim 30$% from point-particle values; in many ways, vector-meson properties are as much influenced by emergent mass as those of pseudoscalars; and vector meson electric form factors possess a zero at spacelike momentum transfer. Qualitative similarities between the electric form factors of the $rho$ and the proton, $G_E^p$, are used to argue that the character of emergent mass in the Standard Model can force a zero in $G_E^p$. Morover, the existence of a zero in vector meson electric form factors entails that a single-pole vector meson dominance model can only be of limited use in estimating properties of off-shell vector mesons, providing poor guidance for systems in which the Higgs-mechanism of mass generation is dominant.
We present dilepton spectra from p+p and p+Nb collisions at a kinetic beam energy of 3.5 GeV, which were simulated with the GiBUU transport model assuming different in-medium scenarios. We compare these spectra to preliminary HADES data and show that GiBUU can describe the data reasonably well. Our simulations indicate that the intermediate dilepton-mass region is sensitive to the N-Delta electromagnetic transition form factor, which up to now is unmeasured in the time-like region.
182 - W. Plessas 2010
We present a review of the description of hadron properties along an invariant mass operator in the point form of Poincare-invariant relativistic dynamics. The quark-quark interaction is furnished by a linear confinement, consistent with the QCD stri ng tension, and a hyperfine interaction derived from Goldstone-boson exchange. The main advantage of the point-form approach is the possibility of calculating manifestly covariant observables, since the generators of Lorentz transformations remain interaction-free. We discuss the static properties of the mass-operator eigenstates, such as the invariant mass spectra of light- and heavy-flavor baryons, the characteristics of the eigenstates in terms of their spin, flavor, and spatial dependences as well as their classification into spin-flavor multiplets. Regarding dynamical observables we address the electroweak structures of the nucleon and hyperon ground states, including their electric radii, magnetic moments as well as axial charges, and in addition a recently derived microscopic description of the $pi NN$ as well as $pi NDelta$ interaction vertices. Except for hadronic resonance decays, which are not addressed here due to space limitations, all of these observables are obtained in good agreement with existing phenomenology. Relativistic (boost) effects are generally sizable. We conclude that low-energy hadrons can be well described by an effective theory with a finite number of degrees of freedom, as long as the symmetries of low-energy quantum chromodynamics (spontaneously broken chiral symmetry) as well as special relativity (Poincare invariance) are properly taken into account. The latter requirement is particularly well and efficiently met in the point-form approach.
125 - A. Krassnigg 2009
In theoretical hadron physics mesons are a center of attention. Constructed in a simpler way than baryons in the quark model, they still present a considerable challenge if one aims at an understanding of all their aspects in terms of quarks and gluo ns in the context of Quantum Chromodynamics, the quantum field theory of the strong interaction. Complementary to (constituent-) quark models, reductions of the Bethe-Salpeter equation, lattice QCD, and effective field theories, the Dyson-Schwinger-equation approach has emerged as a well-suited formalism for the covariant study of hadron properties. In particular, radially excited mesons exhibit a sensitivity to long-range strong-interaction physics. This sensitivity has recently been studied with the help of the Bethe-Salpeter equation. Here these studies are reviewed and continued together with an account of possible future developments.
555 - Adam Freese , Ian C. Cloet 2019
We calculate the gravitational form factors of the pion, sigma meson, and rho meson in the Nambu-Jona-Lasinio (NJL) model of quantum chromodynamics. The canonical energy-momentum tensor (EMT) is used in their derivation, allowing the possibility of a n antisymmetric contribution when the hadron has intrinsic spin. We show that the asymmetric graviton vertex arising from the canonical EMT satisfies a simpler Ward-Takahashi identity (WTI) than the symmetric graviton vertex of the Belinfante EMT. The necessity of fully dressing the graviton vertex through the relevant Bethe-Salpeter equation is demonstrated for observing both the WTI and a low-energy pion theorem. Lastly, we calculate static moments of the meson EMT decompositions, obtaining predictions for the meson mass radii. We find light cone mass radii of 0.27 fm for the pion, 0.32 fm for the sigma, and 0.39 fm for the rho. For the pion and rho, these are smaller than the light cone charge radii, respectively 0.51 fm and 0.45 fm, while we have a sigma charge radius of zero. Our light cone pion mass radius agrees with a phenomenological extraction from KEKB data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا