A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering from ${}^{208}$Pb of protons with energies in the range 30 to 300 MeV.
A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering of protons from (15) nuclei spanning the mass range ${}^{9}$Be to ${}^{238}$U and for proton energies ranging from 20 to 300 MeV.
Total cross sections for neutron scattering from nuclei, with energies ranging from 10 to 600 MeV and from many nuclei spanning the mass range 6Li to 238U, have been analyzed using a simple, three-parameter, functional form. The calculated cross sect
ions are compared with results obtained by using microscopic (g-folding) optical potentials as well as with experimental data. The functional form reproduces those total cross sections very well. When allowance is made for Ramsauer-like effects in the scattering, the parameters of the functional form required vary smoothly with energy and target mass. They too can be represented by functions of energy and mass.
114 cross sections for nuclide production in a 1.0 GeV proton-irradiated thin 208Pb target have been measured by the direct gamma spectrometry method using a high-resolution Ge detector. The gamma spectra were processed by the GENIE-2000 code. The IT
EP-developed SIGMA code was used together with the PCNUDAT nuclear decay database to identify the gamma lines and to determine the cross sections. The 27Al(p,x)22Na reaction was used to monitor the proton flux. Results of a feasibility study of the auxiliary 27Al(p,x)24Na and 27Al(p,x)7Be monitor reactions in the 0.07-2.6 GeV proton-energy range are presented as well. Most of the experimental data have been analyzed by the LAHET (with ISABEL and Bertini options), CEM95, CEM2k, INUCL, CASCADE, CASCADE/INPE, and YIELDX codes that simulate hadron-nucleus interactions.
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the
incident energy range of $30 lsim E_{rm in} lsim 400 $ MeV, and it is found that the model reliably reproduces the $sigma_R$ in $30 lsim E_{rm in} lsim 100 $ MeV and $250 lsim E_{rm in} lsim 400$ MeV. item[Aim] We determine $R_n$ and the neutron skin thickness $R_{rm skin}$ of ${}^{208}{rm Pb}$ by using high-quality $sigma_R$ data for the $p+{}^{208}{rm Pb}$ scattering in $30 leq E_{rm in} leq 100$ MeV. The theoretical model is the Kyushu $g$-matrix folding model with the densities calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP). item[Results] The Kyushu $g$-matrix folding model with the GHFB+AMP densities underestimates $sigma_{rm R}$ in $30 leq E_{rm in} leq 100$~MeV only by a factor of 0.97. Since the proton radius $R_p$ calculated with GHFB+AMP agrees with the precise experimental data of 5.444 fm, the small deviation of the theoretical result from the data on $sigma_R$ allows us to scale the GHFB+AMP neutron density so as to reproduce the $sigma_R$ data. In $E_{rm in}$ = 30--100 MeV, the experimental $sigma_R$ data can be reproduced by assuming the neutron radius of ${}^{208}{rm Pb}$ as $R_n$ = $5.722 pm 0.035$ fm. item[Conclusion] The present result $R_{rm skin}$ = $0.278 pm 0.035$ fm is in good agreement with the recent PREX-II result of $r_{rm skin}$ = $0.283pm 0.071$ fm.
We systematically study total reaction cross sections of carbon isotopes with N=6-16 on a proton target for wide range of incident energies, putting an emphasis on the difference from the case of a carbon target. The analysis includes the reaction cr
oss sections of ^{19,20,22}C at 40 AMeV, the data of which have recently been measured at RIKEN. The Glauber theory is used to calculate the reaction cross sections. To describe the intrinsic structure of the carbon isotopes, we use a Slater determinant generated from a phenomenological mean-field potential, and construct the density distributions. To go beyond the simple mean-field model, we adopt two types of dynamical models: One is a core+n model for odd-neutron nuclei, and the other is a core+n+n model for 16C and 22C. We propose empirical formulas which are useful in predicting unknown cross sections.