ﻻ يوجد ملخص باللغة العربية
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The items discussed include charge-dependence, the precise value of the $pi NN$ coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.
Motivated by the recent measurement of proton-proton spin-correlation parameters up to 2.5 GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1 GeV. Signatures for a gradual failure of the traditional meson model w
The delta-shell representation of the nuclear force allows a simplified treatment of nuclear correlations. We show how this applies to the Bethe-Goldstone equation as an integral equation in coordinate space with a few mesh points, which is solved by
Two-pion exchange parity-violating nucleon-nucleon interactions from recent effective field theories and earlier fully covariant approaches are investigated. The potentials are compared with the idea to obtain better insight on the role of low-energy
Low-energy nuclear structure is not sensitive enough to resolve fine details of nucleon-nucleon (NN) interaction. Insensitivity of infrared physics to the details of short-range strong interaction allows for consistent, free of ultraviolet divergence
We present two novel relations between the quasiparticle interaction in nuclear matter and the unique low momentum nucleon-nucleon interaction in vacuum. These relations provide two independent constraints on the Fermi liquid parameters of nuclear ma